Abstract:
Latent fluorescent tags, including compounds of Formula I, methods of making latent fluorescent tags, and methods of fluorescently labeling living cells are provided. The compounds of Formula I have the structure: wherein each of the variables are as defined herein.
Abstract:
The present technology provides a carbon fiber reinforced plastic that includes carbon fibers covalently bonded to an energetic polymer and a polymer matrix. Also described is a method for recycling carbon fibers from the carbon fiber reinforced plastic material using microwave energy to separate the carbon fibers from the polymer matrix.
Abstract:
The present technology provides a carbon fiber reinforced plastic that includes carbon fibers covalently bonded to an energetic polymer and a polymer matrix. Also described is a method for recycling carbon fibers from the carbon fiber reinforced plastic material using microwave energy to separate the carbon fibers from the polymer matrix.
Abstract:
Technologies are generally described for gas filtration and detection devices. Example devices may include a graphene membrane and a sensing device. The graphene membrane may be perforated with a plurality of discrete pores having a size-selective to enable one or more molecules to pass through the pores. A sensing device may be attached to a supporting permeable substrate and coupled with the graphene membrane. A fluid mixture including two or more molecules may be exposed to the graphene membrane. Molecules having a smaller diameter than the discrete pores may be directed through the graphene pores, and may be detected by the sensing device. Molecules having a larger size than the discrete pores may be prevented from crossing the graphene membrane. The sensing device may be configured to identify a presence of a selected molecule within the mixture without interference from contaminating factors.
Abstract:
Technologies are generally described for gas filtration and detection devices. Example devices may include a graphene membrane and a sensing device. The graphene membrane may be perforated with a plurality of discrete pores having a size-selective to enable one or more molecules to pass through the pores. A sensing device may be attached to a supporting permeable substrate and coupled with the graphene membrane. A fluid mixture including two or more molecules may be exposed to the graphene membrane. Molecules having a smaller diameter than the discrete pores may be directed through the graphene pores, and may be detected by the sensing device. Molecules having a larger size than the discrete pores may be prevented from crossing the graphene membrane. The sensing device may be configured to identify a presence of a selected molecule within the mixture without interference from contaminating factors.
Abstract:
Techniques described herein generally relate to etching graphene. The techniques can include disposing graphene on a patterned substrate, applying a resist to the graphene on the patterned substrate, curing the resist, and etching exposed portions of the graphene. Graphene composites including patterned substrates, graphene disposed on the patterned substrate, and a resist disposed on the graphene, are disclosed. Systems configured to perform the methods and/or make the graphene composites are also disclosed.
Abstract:
Technologies are generally described for a gas filtration device including an array of parallel carbon nanotubes. The carbon nanotubes may extend between first and second substrates, and the ends of the carbon nanotubes may be embedded in the substrates and cut to expose openings at each end of the carbon nanotubes. The carbon nanotubes may be composed from a graphene membrane which may be perforated with a plurality of discrete pores of a selected size for enabling one or more molecules to pass through the pores. A fluid mixture including two or more molecules for filtering may be directed through the first openings of the array of nanotubes, and the fluid mixture may be filtered by enabling smaller molecules to pass through the discrete pores of the graphene membrane walls of the carbon nanotubes to produce in a filtrate fraction including the smaller molecules and a retentate fraction including larger molecules.
Abstract:
Technologies are generally provided for thermostatic packaging materials for packing temperature sensitive products such as foods, beverages, biological materials, pharmaceuticals, vaccines, and live organisms. The thermostatic packaging materials may be formed from a number of substrates in which thermo-responsive capsules may be suspended. The substrates may be composed from a gelatin film substrate in some examples. The thermo-responsive capsules may encapsulate a cooling agent for reducing a surrounding environmental temperature. The thermo-responsive capsules may be composed from a polymer such as poly N-isopropylacrylamide (PNIPAAm), which may be configured to release the encapsulated cooling agents when the surrounding environmental temperature reaches a threshold temperature. The substrates including the suspended thermo-responsive capsules encapsulating a cooling agent may be layered together to form a laminate having many cooling layers to provide a staged release mechanism to continuously provide a cooling effect for packaged materials.
Abstract:
Latent fluorescent tags, including compounds of Formula I, methods of making latent fluorescent tags, and methods of fluorescently labeling living cells are provided. The compounds of Formula I have the structure: wherein each of the variables are as defined herein.
Abstract:
Technologies are generally described for a gas filtration device including an array of parallel carbon nanotubes. The carbon nanotubes may extend between first and second substrates, and the ends of the carbon nanotubes may be embedded in the substrates and cut to expose openings at each end of the carbon nanotubes. The carbon nanotubes may be composed from a graphene membrane which may be perforated with a plurality of discrete pores of a selected size for enabling one or more molecules to pass through the pores. A fluid mixture including two or more molecules for filtering may be directed through the first openings of the array of nanotubes, and the fluid mixture may be filtered by enabling smaller molecules to pass through the discrete pores of the graphene membrane walls of the carbon nanotubes to produce in a filtrate fraction including the smaller molecules and a retentate fraction including larger molecules.