Accelerating transport through graphene membranes
    3.
    发明授权
    Accelerating transport through graphene membranes 有权
    通过石墨烯膜加速运输

    公开(公告)号:US09545600B2

    公开(公告)日:2017-01-17

    申请号:US14703730

    申请日:2015-05-04

    摘要: Technologies are generally described for a membrane that may incorporate a graphene layer perforated by a plurality of nanoscale pores. The membrane may also include a gas sorbent that may be configured to contact a surface of the graphene layer. The gas sorbent may be configured to direct at least one gas adsorbed at the gas sorbent into the nanoscale pores. The nanoscale pores may have a diameter that selectively facilitates passage of a first gas compared to a second gas to separate the first gas from a fluid mixture of the two gases. The gas sorbent may increase the surface concentration of the first gas at the graphene layer. Such membranes may exhibit improved properties compared to conventional graphene and polymeric membranes for gas separations, e.g., greater selectivity, greater gas permeation rates, or the like.

    摘要翻译: 通常描述用于可以并入由多个纳米尺度孔穿孔的石墨烯层的膜的技术。 膜还可以包括气体吸附剂,其可被配置为接触石墨烯层的表面。 气体吸附剂可以被配置为将吸附在气体吸附剂上的至少一种气体引导到纳米级孔中。 纳米尺度孔可以具有选择性地促进第一气体与第二气体相比的通道的直径,以将第一气体与两种气体的流体混合物分离。 气体吸附剂可以增加石墨烯层处的第一气体的表面浓度。 与用于气体分离的常规石墨烯和聚合物膜相比,这样的膜可以表现出改进的性能,例如更大的选择性,更大的气体渗透速率等。

    SELF-WRITING WAVEGUIDE WITH NANOPARTICLES
    4.
    发明申请
    SELF-WRITING WAVEGUIDE WITH NANOPARTICLES 有权
    自我写作波兰与纳米粒子

    公开(公告)号:US20160145378A1

    公开(公告)日:2016-05-26

    申请号:US14899123

    申请日:2013-06-19

    IPC分类号: C08G59/02

    摘要: Technologies are generally described for fabricating a self-writing waveguide. Two photo-reactive liquid monomers, each infused with a photo-initiator, may be mixed and dissolved in a carrier solvent to form a mixture. Nanoparticles may be added to the mixture to form a gel. A focused light beam may be provided to cure one of the monomers, initiating polymerization to form a core of the self-writing waveguide. An optional exposure to an optical source, a heat source, or an electron beam source may cure the other monomer, initiating polymerization to form a cladding of the self-writing waveguide. The self-writing waveguide may be formed in a substantially tubular structure or a planar film structure.

    摘要翻译: 技术通常用于制造自写波导。 各自注入光引发剂的两种光反应性液体单体可以混合并溶解在载体溶剂中以形成混合物。 可以将纳米颗粒加入到混合物中以形成凝胶。 可以提供聚焦光束以固化单体之一,引发聚合以形成自写波导的芯。 可选地暴露于光源,热源或电子束源可以固化其它单体,引发聚合以形成自写波导的包层。 自写波导可以形成为大致管状结构或平面膜结构。

    ACCELERATING TRANSPORT THROUGH GRAPHENE MEMBRANES
    5.
    发明申请
    ACCELERATING TRANSPORT THROUGH GRAPHENE MEMBRANES 有权
    通过石墨膜加速运输

    公开(公告)号:US20150231557A1

    公开(公告)日:2015-08-20

    申请号:US14703730

    申请日:2015-05-04

    摘要: Technologies are generally described for a membrane that may incorporate a graphene layer perforated by a plurality of nanoscale pores. The membrane may also include a gas sorbent that may be configured to contact a surface of the graphene layer. The gas sorbent may be configured to direct at least one gas adsorbed at the gas sorbent into the nanoscale pores. The nanoscale pores may have a diameter that selectively facilitates passage of a first gas compared to a second gas to separate the first gas from a fluid mixture of the two gases. The gas sorbent may increase the surface concentration of the first gas at the graphene layer. Such membranes may exhibit improved properties compared to conventional graphene and polymeric membranes for gas separations, e.g., greater selectivity, greater gas permeation rates, or the like.

    摘要翻译: 通常描述用于可以并入由多个纳米尺度孔穿孔的石墨烯层的膜的技术。 膜还可以包括气体吸附剂,其可被配置为接触石墨烯层的表面。 气体吸附剂可以被配置为将吸附在气体吸附剂上的至少一种气体引导到纳米级孔中。 纳米尺度孔可以具有选择性地促进第一气体与第二气体相比的通道的直径,以将第一气体与两种气体的流体混合物分离。 气体吸附剂可以增加石墨烯层处的第一气体的表面浓度。 与用于气体分离的常规石墨烯和聚合物膜相比,这样的膜可以表现出改进的性能,例如更大的选择性,更大的气体渗透速率等。

    GRAPHENE MEMBRANE WITH SIZE-TUNABLE NANOSCALE PORES
    6.
    发明申请
    GRAPHENE MEMBRANE WITH SIZE-TUNABLE NANOSCALE PORES 审中-公开
    具有大小不等的纳米孔的石墨膜

    公开(公告)号:US20140154464A1

    公开(公告)日:2014-06-05

    申请号:US13985523

    申请日:2012-11-30

    IPC分类号: B01D39/20

    摘要: Technologies are generally described for a graphene membrane with uniformly-sized nanoscale pores that may be prepared at a desired size using colloidal lithography. A graphene monolayer may be coated with colloidal nanoparticles using self-assembly, followed by off-axis metal layer deposition, for example. The metal layer may form on the colloidal nanoparticles and on portions of the graphene not shadowed by the nanoparticles. The nanoparticles may be removed to leave a negative metal mask that exposes the underlying graphene through holes left by the removed nanospheres. The bare graphene may be etched to create pores using an oxygen plasma or similar material, while leaving metal-masked regions intact. Pore size may be controlled according to size of colloidal nanoparticles and angle of metal deposition relative to the substrate. The process may result in a dense, hexagonally packed array of uniform holes in graphene for use as a membrane, especially in liquid separations.

    摘要翻译: 通常描述具有均匀尺寸的纳米尺度孔的石墨烯膜的技术,其可以使用胶体光刻法以所需尺寸制备。 石墨烯单层可以使用自组装涂覆胶体纳米粒子,然后例如离轴金属层沉积。 金属层可以形成在胶体纳米颗粒上,并且在石墨烯的部分上不被纳米颗粒遮蔽。 可以去除纳米颗粒以留下阴极金属掩模,其通过去除的纳米球留下的孔暴露下面的石墨烯。 可以使用氧等离子体或类似材料蚀刻裸石墨烯以产生孔,同时保留金属掩蔽区。 孔径可以根据胶体纳米粒子的尺寸和相对于基底的金属沉积角来控制。 该方法可能导致石墨烯中密集的六边形排列的均匀孔,用作膜,特别是在液体分离中。

    GRAPHENE MEMBRANE LAMINATED TO POROUS WOVEN OR NONWOVEN SUPPORT
    7.
    发明申请
    GRAPHENE MEMBRANE LAMINATED TO POROUS WOVEN OR NONWOVEN SUPPORT 有权
    多孔薄膜层压到多孔或非金属支撑

    公开(公告)号:US20140151288A1

    公开(公告)日:2014-06-05

    申请号:US13982344

    申请日:2012-11-30

    IPC分类号: B01D69/12 B01D71/02

    摘要: Technologies are generally described for composite membranes which may include a porous graphene layer in contact with a porous support substrate. In various examples, a surface of the porous support substrate may include at least one of: a thermo-formed polymer characterized by a glass transition temperature, a woven fibrous membrane, and/or a nonwoven fibrous membrane. Examples of the composite membranes permit the use of highly porous woven or nonwoven fibrous support membranes instead of intermediate porous membrane supports. In several examples, the composite membranes may include porous graphene layers directly laminated onto the fibrous membranes via the thermo-formed polymers. The described composite membranes may be useful for separations, for example, of gases, liquids and solutions.

    摘要翻译: 复合膜通常描述技术,其可以包括与多孔载体基底接触的多孔石墨烯层。 在各种实施例中,多孔支撑基底的表面可以包括以玻璃化转变温度为特征的热成型聚合物,织造纤维膜和/或非织造纤维膜中的至少一种。 复合膜的实例允许使用高度多孔的织造或非织造纤维支撑膜代替中间多孔膜支撑。 在几个实例中,复合膜可以包括通过热成型聚合物直接层压到纤维膜上的多孔石墨烯层。 所描述的复合膜可用于例如气体,液体和溶液的分离。

    SELECTIVE MEMBRANE SUPPORTED ON NANOPOROUS GRAPHENE
    10.
    发明申请
    SELECTIVE MEMBRANE SUPPORTED ON NANOPOROUS GRAPHENE 审中-公开
    选择性膜支持纳米石墨

    公开(公告)号:US20150273401A1

    公开(公告)日:2015-10-01

    申请号:US14434392

    申请日:2012-11-30

    摘要: Technologies are generally described for composite membranes that may include a nanoporous graphene layer sandwiched between a first selective membrane and a porous support substrate. The composite membranes may be formed by depositing the selective membrane on one side of the nanoporous graphene layer, while the other side of the nanoporous graphene layer may be supported at a nonporous support substrate. The nanoporous graphene layer may be removed with the selective membrane from the nonporous support substrate and contacted to the porous support substrate to form the composite membranes. By depositing the selective membrane on a flat surface, the nanoporous graphene on the nonporous support substrate, the selective membranes may be produced with reduced defect formation at thicknesses of as little as 0.1 μm or less. The described composite membranes may have increased permeance compared to thicker selective membranes, and structural strength greater than thin selective membranes alone.

    摘要翻译: 通常描述复合膜的技术,其可以包括夹在第一选择膜和多孔支撑基底之间的纳米多孔石墨烯层。 复合膜可以通过在纳米多孔石墨烯层的一侧上沉积选择性膜而形成,而纳米多孔石墨烯层的另一侧可以被支撑在无孔支撑基底上。 纳米多孔石墨烯层可以用选择性膜从无孔支撑基底去除并与多孔载体基底接触以形成复合膜。 通过将选择性膜沉积在平坦表面上,在无孔支撑衬底上的纳米多孔石墨烯,可以以少至0.1μm或更小的厚度生产缺陷形成减少的选择性膜。 与较厚的选择性膜相比,所述复合膜可能具有增加的渗透性,并且结构强度大于单独的薄选择性膜。