Abstract:
An optical fiber current sensor includes a transmitter optical subassembly (TOSA) that is formed in a package of a linear polarizer that applies light from a light source to a sensor coil that is formed with an optical fiber by linearly polarizing, a polarization beam splitter that separates light that is reflected from the sensor coil according to polarization, and a receiver optical subassembly (ROSA) that is formed in a package together with first and second photodetectors that detect separated light according to polarization.
Abstract:
Disclosed herein are an astral lamp device having detachable and angle-controllable LED module blocks and a method of setting the same. The astral lamp device having detachable and angle-controllable LED module blocks, includes a plurality of LED module blocks having one end attached to and disposed on a central frame; and an angle control part configured to control an angle of the LED module block attached to the central frame.
Abstract:
Disclosed are a bidirectional optical transceiver module and a method of aligning the same. The bidirectional optical transceiver module includes: a package having on one side a cavity; a platform mounted on the package; a transmitter which generates output light; a holder which includes the horizontal portion having the through-hole and disposed on the package to cover the cavity, and the vertical portion which has the inclined surface on one side and the connection hole connected to the through-hole; a receiver which generates an electric signal that corresponds to input light incident into the cavity; and a WDM filter that delivers the output light and the input light.
Abstract:
Provided is an apparatus that measures a thickness of a coating by selecting a wavelength of a laser based on a color of the coating using a contactless method using a photoacoustic effect and an interferometer, the apparatus including a pulsed laser source to irradiate a pulsed laser beam toward the coating, a continuous wave (CW) laser source to irradiate a CW laser beam toward the coating, a detector to detect an optical interference signal corresponding to the CW laser beam, and a signal processor to process the optical interference signal to calculate a thickness of the coating.
Abstract:
Provided herein is an optical module including: an optical receptacle including a first lens and a second lens; a lens module including a lens unit facing the second lens of the optical receptacle; and an optical element configured to receive a beam emitted from the lens module or form a beam to be emitted to the lens module. A horizontal length and a vertical length of a cross-section of the first lens may differ from each other, and a horizontal length and a vertical length of a cross-section of the second lens may differ from each other.
Abstract:
The optical transmitter module may include a thermal-electric cooler comprising at least one metal pattern formed on a side of a cooling plate temperature of which is controlled by thermo-electric cooling elements, a laser diode installed in one of the at least one metal pattern, and a monitor photo diode which is installed in another one of the at least one metal pattern and monitors change of light signals emitted from the laser diode. Therefore, since elements are located on the same side of the cooling plate, the optical transmitter module may have a simple structure and an advantage that light signals emitted from the laser diode can be directly coupled to the optical fiber without optical path conversions. Also, since the laser diode is installed with a small gap from thermal-electric elements, the temperature control characteristics of the thermal-electric cooler can be enhanced.
Abstract:
An apparatus for guiding an endoscope and a method thereof are provided. According to an embodiment of the present invention, there is provided an endoscope guide method including: acquiring tomogram information of tissues based on an optical interference signal according to an optical signal; calculating a distance between an endoscope and the tissues based on the tomogram information; and controlling the location of the endoscope according to the result of comparison between the distance between the endoscope and the tissues and a predetermined reference distance. Accordingly, it is possible to accurately measure the distance between an endoscope and tissues.
Abstract:
A structure and a manufacturing method of an optical transmission module, in which output light of each of a first optical transmission unit and a second optical transmission unit is combined into one and transmitted through an optical fiber. In order to manufacture the optical transmission module, the first optical transmission unit and the second optical transmission unit are separately manufactured using a wafer-level packaging process and then are stacked. As a result, emission of generated heat is divided into a first heat sink installed in the first optical transmission unit and a second heat sink installed in the second optical transmission unit so that better heat dissipation efficiency is achieved than a conventional optical transmission module. In addition, a mounting area may also be reduced to ½ of the conventional module.
Abstract:
A method of mixing video bitstreams and an apparatus performing the method are disclosed. The method includes generating a mixed scalable video coding (SVC) bitstream by mixing a plurality of SVC bitstreams for each layer based on a screen configuration of a user device, extracting a single SVC bitstream corresponding to a single layer from the mixed SVC bitstream based on a reception environment of the user device, and transmitting the single SVC bitstream to the user device.
Abstract:
Disclosed is a multi-wavelength transmission apparatus including a wavelength divider to divide an optical signal by wavelength and output wavelength-divided optical signals to different positions, the optical signal being received from an optical circulator, a first cylindrical lens to diverge the wavelength-divided optical signals along an X axis and a Y axis and allow the wavelength-divided optical signals to be promoted in a Z-direction, a second cylindrical lens to diverge optical signals output from the first cylindrical lens along the X axis and the Y axis and allow the output optical signals to be promoted in the Z-direction, and a reflector to reflect optical signals output from the second cylindrical lens toward the second cylindrical lens, the first cylindrical lens being identical in shape to the second cylindrical lens and rotated by 90° in an Y-axial direction based on the second cylindrical lens.