摘要:
A semiconductor pressure sensor includes a first substrate having a concave portion and an alignment mark at a main surface thereof, and a second substrate formed on the main surface of the first substrate and having a diaphragm provided to cover a space inside the concave portion of the first substrate and a gauge resistor provided on the diaphragm. The alignment mark is provided to be exposed from the second substrate. Accordingly, it is possible to obtain a semiconductor pressure sensor and a method of manufacturing the same with reduced production costs and with improved pressure measuring accuracy.
摘要:
A semiconductor pressure sensor that can improve diaphragm breakage pressure tolerance is provided.Included are: a first semiconductor substrate on which is formed a recess portion that has an opening on a first surface in a thickness direction; a second semiconductor substrate that is disposed so as to face the first surface of the first semiconductor substrate; and a first silicon oxide film that is interposed between the first semiconductor substrate and the second semiconductor substrate, and on which is formed a penetrating aperture that communicates between the recess portion and the second semiconductor substrate, and at least a portion of an edge portion of the penetrating aperture is positioned inside an opening edge portion of the recess portion when viewed from a side facing the penetrating aperture and the opening of the recess portion.
摘要:
An electrochemical etching system has an etching bath for holding an n-type silicon substrate with a first surface of the substrate in contact with hydrofluoric acid, an electrode positioned in the hydrofluoric acid, a power source having a positive pole connected to the silicon substrate and a negative pole connected to the electrode, and an illumination unit having a light source for illumination of a second surface of the silicon substrate. The illumination unit illuminates the second surface of the silicon substrate with an illumination intensity of 10 m W/cm2 or more. A ratio of a maximum illumination to a minimum illumination of the second surface of the silicon substrate is 1.69:1 or less. With the etching system, pores and/or trenches of a certain size and shape can be formed in an entire area of the silicon substrate having a diameter of more than three inches.
摘要翻译:电化学蚀刻系统具有用于保持n型硅衬底的蚀刻浴,其中衬底的第一表面与氢氟酸接触,位于氢氟酸中的电极,具有连接到硅衬底的正极的电源和 连接到电极的负极和具有用于照射硅衬底的第二表面的光源的照明单元。 照明单元以10mW / cm 2以上的照明强度照射硅衬底的第二表面。 硅衬底的第二表面的最大照度与最小照度的比为1.69:1或更小。 利用蚀刻系统,可以在具有大于3英寸的直径的硅衬底的整个区域中形成一定尺寸和形状的孔和/或沟槽。
摘要:
A dielectric isolation type semiconductor device and a manufacturing method therefor achieve high dielectric resistance while preventing the dielectric strength of the semiconductor device from being limited depending on the thickness of a dielectric layer and the thickness of a first semiconductor layer. A semiconductor substrate (1) and an n− type semiconductor layer (2) are bonded to each other through a buried oxide film layer (3). A first porous oxide film area (10) is formed in the semiconductor substrate in a state contacting with the buried oxide film layer. A power device is formed on the n− type semiconductor layer. The first porous oxide film area is formed in an area including a location right under a first main electrode (6) and extending from the first main electrode side up to a range of more than 40% of a distance (L) between the first and second main electrodes (6, 7).
摘要:
An atmospheric pressure plasma treatment apparatus includes a moving unit configured to relatively move an atmospheric pressure plasma treatment head and member to be treated, gas supply units configured to supply a reaction gas and a curtain gas, and a control unit. When the atmospheric pressure plasma treatment head and the member are relatively moved, the control unit performs control to increase a flow rate of the reaction gas and the curtain gas from an opposite direction side of a relative moving direction of the member with respect to the atmospheric pressure plasma treatment head and reduce a flow rate of the reaction gas and the curtain gas in the relative moving direction side of the member compared with the flow rates of the reaction gas and the curtain gas flowing when the atmospheric pressure plasma treatment head and the member are not relatively moved.
摘要:
A switch circuit including: a plurality of MEMS switches connected in parallel or in series, which have different drive voltages; and a single voltage supply for driving the plurality of MEMS switches by the plurality of drive voltages, is used for a microwave circuit or an antenna circuit, to vary a configuration of the microwave circuit or the antenna circuit based on the drive voltage value. That is, the configuration of the microwave circuit or the antenna circuit can be varied based on the drive voltage value by using the switch circuit including the MEMS switches having the different drive voltages for the microwave circuit or the antenna circuit.
摘要:
A dielectric isolation type semiconductor device and a manufacturing method therefor achieve high dielectric resistance while preventing the dielectric strength of the semiconductor device from being limited depending on the thickness of a dielectric layer and the thickness of a first semiconductor layer. A semiconductor substrate (1) and an n− type semiconductor layer (2) are bonded to each other through a buried oxide film layer (3). A first porous oxide film area (10) is formed in the semiconductor substrate in a state contacting with the buried oxide film layer. A power device is formed on the n− type semiconductor layer. The first porous oxide film area is formed in an area including a location right under a first main electrode (6) and extending from the first main electrode side up to a range of more than 40% of a distance (L) between the first and second main electrodes (6, 7).
摘要:
A semiconductor pressure sensor comprises a silicon support substrate (1), an insulating layer (2) formed on the silicon support substrate (1), and a silicon thin plate (3) formed on the insulating layer (2). A through-hole (1a) extending in the thickness direction of the silicon support substrate (1) is formed in the silicon support substrate (1). The silicon thin plate (3) located on an extension of the through-hole (1a) functions as a diaphragm (23) that is deformed by an external pressure. The insulating layer (2) remains over the entire lower surface of the diaphragm (23). The thickness of the insulating layer (2) decreases from the peripheral portion toward the central portion of the diaphragm (23). This provides the semiconductor pressure sensor capable of reducing both the offset voltage and the variation of output voltage caused by the variation of temperature and its fabrication method.
摘要:
A semiconductor pressure sensor comprises a silicon support substrate (1), an insulating layer (2) formed on the silicon support substrate (1), and a silicon thin plate (3) formed on the insulating layer (2). A through-hole (1a) extending in the thickness direction of the silicon support substrate (1) is formed in the silicon support substrate (1). The silicon thin plate (3) located on an extension of the through-hole (1a) functions as a diaphragm (23) that is deformed by an external pressure. The insulating layer (2) remains over the entire lower surface of the diaphragm (23). The thickness of the insulating layer (2) decreases from the peripheral portion toward the central portion of the diaphragm (23). This provides the semiconductor pressure sensor capable of reducing both the offset voltage and the variation of output voltage caused by the variation of temperature and its fabrication method.
摘要:
A plasma generating apparatus irradiates plasma on a treatment object. The plasma is generated under gas pressure equal to or higher than 100 pascals and equal to or lower than atmospheric pressure in an inter-electrode gap between a first electrode to which a power supply is connected and a second electrode arranged to be opposed to the first electrode and grounded. The first electrode has a structure in which the first electrode is retained on a grounded conductive retaining member via a solid dielectric provided on a surface not opposed to the second electrode, and a conductive film is continuously provided on a surface in a predetermined range in contact with the conductive retaining member and a surface in a predetermined range not in contact with the conductive retaining member on a surface of the solid dielectric.