Abstract:
A magnetic field sensing element comprises an underlayer formed on a substrate, a giant magnetoresistance element formed on the underlayer for detecting a change in a magnetic field, and an integrated circuit formed on the substrate for carrying out predetermined arithmetic processing based on a change in a magnetic field detected by the giant magnetoresistance element, wherein the giant magnetoresistance element and the integrated circuit are formed on the same surface.
Abstract:
An optical disk adapted to resist moisture absorption, warping and static charge is disclosed. The disk includes an SiO.sub.2 film coating over at least a portion of a disk substrate. Additionally, an optical disk having a magnetic film protected by a fluorocarbon polymer is disclosed. Either of such disks can be used individually or, alternatively, they can be used in a laminated structure having two disks laminated in a face-to-face relationship. The laminated structure can be covered with SiO.sub.2 film.
Abstract:
A semiconductor pressure sensor comprises a silicon support substrate (1), an insulating layer (2) formed on the silicon support substrate (1), and a silicon thin plate (3) formed on the insulating layer (2). A through-hole (1a) extending in the thickness direction of the silicon support substrate (1) is formed in the silicon support substrate (1). The silicon thin plate (3) located on an extension of the through-hole (1a) functions as a diaphragm (23) that is deformed by an external pressure. The insulating layer (2) remains over the entire lower surface of the diaphragm (23). The thickness of the insulating layer (2) decreases from the peripheral portion toward the central portion of the diaphragm (23). This provides the semiconductor pressure sensor capable of reducing both the offset voltage and the variation of output voltage caused by the variation of temperature and its fabrication method.
Abstract:
A semiconductor pressure sensor comprises a silicon support substrate (1), an insulating layer (2) formed on the silicon support substrate (1), and a silicon thin plate (3) formed on the insulating layer (2). A through-hole (1a) extending in the thickness direction of the silicon support substrate (1) is formed in the silicon support substrate (1). The silicon thin plate (3) located on an extension of the through-hole (1a) functions as a diaphragm (23) that is deformed by an external pressure. The insulating layer (2) remains over the entire lower surface of the diaphragm (23). The thickness of the insulating layer (2) decreases from the peripheral portion toward the central portion of the diaphragm (23). This provides the semiconductor pressure sensor capable of reducing both the offset voltage and the variation of output voltage caused by the variation of temperature and its fabrication method.
Abstract:
A supporting film is formed over an entire front surface of a base material, a heating resistor composed of a platinum film having a predetermined pattern is formed on the supporting film, and a protecting film is formed over an entire surface of the supporting film so as to cover the heating resistor. A heating structure having a diaphragm construction is constructed by forming a cavity under a region where the heating resistor is formed by removing a portion of the base material so as to extend to the supporting film from the rear surface side of the base material. The supporting film and the protecting film are each constituted by a silicon nitride film having an index of refraction of less than 2.25.
Abstract:
The present invention provides a sensor element having a sensor substrate and a sensing portion supported by the sensor substrate. A resin film is provided between the sensor substrate and the sensing portion. The resin film has a high heat resistance to the temperature of the fabrication process and the use of sensor element, has excellent coverage of a three-dimensional structure, has a flat surface, applies a low stress to the sensing portion, is formed at low temperature, and prevents the sensing portion from being adversely affected in its fabrication process.
Abstract:
The invention provides a sensor element having a sensor substrate and a flat sensor portion supported by the sensor substrate in which the surface of the flat sensing portion is covered with a silicone resin film. The silicone resin film is excellent in step coverage of the flat sensing portion, having low stress applied to the sensing portion, can be formed at low temperature and can prevent the sensing portion from being effected with adverse influence even in the fabrication steps.
Abstract:
A magnetic field sensing element comprises an underlayer formed on a substrate, a giant magnetoresistance element formed on the underlayer for detecting a change in a magnetic field, and an integrated circuit formed on the substrate for carrying out predetermined arithmetic processing based on a change in a magnetic field detected by the giant magnetoresistance element, wherein the giant magnetoresistance element and the integrated circuit are formed on the same surface.
Abstract:
A flow rate detecting element measuring the flow rates of various fluids, particularly the intake air of an internal combustion engine. The flow rate detecting element has a thin film layer including a support film and a protective film on one surface of a flat substrate, a heating resistance section and a comparative resistance section thermosensitive resistor having patterns and located between the support film and the protective film. The flat substrate has a recess which penetrates the flat substrate in the thickness direction thereof and facing the heating resistance section and the comparative resistance section. A fluid flow passage communicates with the recess which faces the comparative resistance section for fluid flow into the recess. Flow rate or velocity of a fluid can be measured accurately using the heating resistance section according to the fluid temperature reported by the comparative resistance section.
Abstract:
An optical disk having a warp preventive film for preventing the warp of the substrate which does not exfoliate for a long period by forming the warp preventive film on a textured area on the substrate surface with a minute embossment, and a method of manufacturing the optical disk by controlling the plasma etching condition for forming a textured area for reinforcing the bonding force of the warp preventive film on the substrate surface, so that the warp preventive film being bonded after forming the textured area may not exfoliate for a long period.