Abstract:
Disclosed is an optical source device. The optical source device includes: a mode converter configured to be optically coupled with an optical fiber; a semiconductor optical amplifier coupled with the mode converter, and configured to amplify an optical signal input through the optical fiber; and an electro absorption modulator coupled to the optical amplifier, and configured to modulate the amplified optical signal and output the modulated optical signal, in which each of the semiconductor optical amplifier and the optical absorption modulator includes a heater.
Abstract:
Disclosed is a wavelength tunable laser apparatus, including: a first substrate configured to reflect inflow laser light, and tune a wavelength of the reflected laser light; and a second substrate configured to adjust a gain of the laser light input from the first substrate, reflect a specific wavelength of the laser light, and adjust a phase of oscillated laser light, in which the first substrate and the second substrate are formed in a single package form.
Abstract:
A multi-channel optical receiving module includes a first substrate disposed on a bench, optical fibers disposed in grooves of the first substrate, a first lens disposed on the first substrate and collimating optical signals through the optical fibers, a second substrate disposed on the bench at a side of the first substrate, a light receiving device disposed on the second substrate, a second lens disposed over the light receiving device, a mirror reflecting the optical signals between the first lens and the second lens, and a block fixing the mirror. The block includes through-holes transmitting the optical signals between the first and second lenses without refraction of the optical signals.
Abstract:
An optical signal processing apparatus using a planar lightwave circuit (PLC) with a waveguide-array structure includes a PLC board including a waveguide-array structure, a cylinder lens for collimating optical signals emitted and output from the PLC board into parallel beams, a condenser lens for condensing, for each channel, optical signals output by passing through the cylinder lens, and a light receiving element for receiving optical signals condensed on at least one channel from the condenser lens and converting the optical signals into electrical signals, wherein the PLC board divides an optical signal input thereto into a plurality of different optical signals and outputs the optical signals at different propagation angles.
Abstract:
The present disclosure relates to an optical line terminal, the disclosure includes: an optical transmitter for generating a low speed downstream optical signal; a wavelength-multiplexer for wavelength-multiplexing the downstream optical signal; a first optical power branching tap coupler for allowing wavelength-multiplexed downstream optical signal to branch off; a wavelength band separator/coupler for separating between the wavelength-multiplexed downstream optical signal and a wavelength-multiplexed upstream optical signal; a circulation type wavelength-demultiplexer for wavelength-demultiplexing a downstream optical signal branched off by the first optical power branching tap coupler and an upstream optical signal separated by the wavelength band separator/coupler; an optical receiver for outputting a downstream electrical signal by using the wavelength-demultiplexed optical signal; and a signal processing module for controlling an optical power and a wavelength of the optical transmitter according to a strength of the downstream electrical signal.
Abstract:
A multi-channel optical receiving module includes a first substrate disposed on a bench, optical fibers disposed in grooves of the first substrate, a first lens disposed on the first substrate and collimating optical signals through the optical fibers, a second substrate disposed on the bench at a side of the first substrate, a light receiving device disposed on the second substrate, a second lens disposed over the light receiving device, a mirror reflecting the optical signals between the first lens and the second lens, and a block fixing the mirror. The block includes through-holes transmitting the optical signals between the first and second lenses without refraction of the optical signals.
Abstract:
Disclosed is an optical line terminal for monitoring and controlling upstream and downstream optical signals, and more particularly, to an optical line terminal for monitoring and controlling upstream and downstream optical signals, which adds different low frequency monitoring signals to upstream and downstream wavelength division multiplexing optical signals in a bidirectional wavelength division multiplexing (WDM) optical network and senses and detects low frequency components of upstream and downstream optical signals to unite, monitor, and control optical outputs and wavelengths of the upstream and downstream wavelength division multiplexing optical signals into a single system.
Abstract:
Disclosed is a wavelength-shifted bidirectional WDM optical network including: an optical line terminal including an optical line terminal (OLT) including a first optical transmitter transmitting a downstream WDM optical signal, a first high-density wavelength multiplexer/demultiplexer wavelength-multiplexing the downstream WDM optical signal or wavelength-demultiplexing a wavelength-multiplexed upstream WDM optical signal, and a first optical receiver receiving the wavelength-demultiplexed upstream WDM optical signal; a remote node (RN) including a second high-density wavelength multiplexer/demultiplexer shifting a center wavelength of the upstream WDM optical signal and wavelength-multiplexing the upstream WDM optical signal with the shifted center wavelength or wavelength-demultiplexing the wavelength-multiplexed downstream WDM optical signal; and multiple optical network units (ONUs) each including a second optical transmitter transmitting the upstream WDM optical signal and second optical receiver receiving the wavelength-demultiplexed downstream WDM optical signal.
Abstract:
Provided herein is a wavelength/bandwidth tunable optical filter capable of flexibly tuning a wavelength and bandwidth, the wavelength/bandwidth tunable optical filter including an optical circulator configured to receive a WDM (Wavelength-Division-Multiplexing) optical signal from an optical cable; and a plurality of wavelength-tunable optical filters configured to receive the WDM optical signal via the optical circulator, wherein the plurality of wavelength-tunable optical filters reflect wavelengths of different bandwidths from one another.
Abstract:
Disclosed are a method and an apparatus for selecting a wavelength by a wavelength tunable optical receiver. The method of selecting a wavelength of a wavelength tunable optical receiver includes: receiving, by the wavelength tunable optical receiver, an optical signal from a wavelength tunable optical transmitter; filtering, by the wavelength tunable optical receiver, the optical signal through a low frequency band electrical signal filter, and obtaining a low frequency signal; determining, by the wavelength tunable optical receiver, whether the low frequency signal is a valid signal based on a current value of the low frequency signal; and when the low frequency signal is the valid signal, obtaining, by the wavelength tunable optical receiver, an enable condition of a wavelength tunable optical filter through which the low frequency signal is selected, in which the low frequency signal includes a control/monitoring signal.