Abstract:
Disclosed is an optical source device. The optical source device includes: a mode converter configured to be optically coupled with an optical fiber; a semiconductor optical amplifier coupled with the mode converter, and configured to amplify an optical signal input through the optical fiber; and an electro absorption modulator coupled to the optical amplifier, and configured to modulate the amplified optical signal and output the modulated optical signal, in which each of the semiconductor optical amplifier and the optical absorption modulator includes a heater.
Abstract:
Disclosed is a wavelength tunable laser apparatus, including: a first substrate configured to reflect inflow laser light, and tune a wavelength of the reflected laser light; and a second substrate configured to adjust a gain of the laser light input from the first substrate, reflect a specific wavelength of the laser light, and adjust a phase of oscillated laser light, in which the first substrate and the second substrate are formed in a single package form.
Abstract:
Disclosed are a method and an apparatus for selecting a wavelength by a wavelength tunable optical receiver. The method of selecting a wavelength of a wavelength tunable optical receiver includes: receiving, by the wavelength tunable optical receiver, an optical signal from a wavelength tunable optical transmitter; filtering, by the wavelength tunable optical receiver, the optical signal through a low frequency band electrical signal filter, and obtaining a low frequency signal; determining, by the wavelength tunable optical receiver, whether the low frequency signal is a valid signal based on a current value of the low frequency signal; and when the low frequency signal is the valid signal, obtaining, by the wavelength tunable optical receiver, an enable condition of a wavelength tunable optical filter through which the low frequency signal is selected, in which the low frequency signal includes a control/monitoring signal.