摘要:
An eFuse, includes: a substrate and an insulating layer disposed on the substrate; a first layer including a single crystal or polycrystalline silicon disposed on the insulating layer; a second layer including a single crystal or polycrystalline silicon germanium disposed on the first layer, and a third layer including a silicide disposed on the second layer. The Ge has a final concentration in a range of approximately five percent to approximately twenty-five percent.
摘要:
A contiguous block of a stack of two heterogeneous semiconductor layers is formed over an insulator region such as shallow trench isolation. A portion of the contiguous block is exposed to an etch, while another portion is masked during the etch. The etch removes an upper semiconductor layer selective to a lower semiconductor layer in the exposed portion. The etch mask is removed and the entirety of the lower semiconductor layer within the exposed region is metallized. A first metal semiconductor alloy vertically abutting the insulator region is formed, while exposed surfaces of the stack of two heterogeneous semiconductor layers, which comprises the materials of the upper semiconductor layer, are concurrently metallized to form a second metal semiconductor alloy. An inflection point for current and, consequently, a region of flux divergence are formed at the boundary of the two metal semiconductor alloys.
摘要:
A contiguous block of a stack of two heterogeneous semiconductor layers is formed over an insulator region such as shallow trench isolation. A portion of the contiguous block is exposed to an etch, while another portion is masked during the etch. The etch removes an upper semiconductor layer selective to a lower semiconductor layer in the exposed portion. The etch mask is removed and the entirety of the lower semiconductor layer within the exposed region is metallized. A first metal semiconductor alloy vertically abutting the insulator region is formed, while exposed surfaces of the stack of two heterogeneous semiconductor layers, which comprises the materials of the upper semiconductor layer, are concurrently metallized to form a second metal semiconductor alloy. An inflection point for current and, consequently, a region of flux divergence are formed at the boundary of the two metal semiconductor alloys.
摘要:
An electromigration-programmable semiconductor device may be programmed to increase the resistance or to decrease the resistance by selecting the amount of current passed through the electromigration-programmable semiconductor device. The electromigration-programmable semiconductor device comprises an anode, a cathode, and a link, each having a semiconductor portion and a metal semiconductor alloy portion. The metal semiconductor alloy portion of the link comprises two disjoined sub-portions with a gap therebetween. A low programming current fills the gap by electromigrating a small amount of metal semiconductor alloy from the cathode, A high programming current forms a large metal-semiconductor-alloy-deleted area in the cathode to increase the resistance. A tri-state programming is achieved by selecting the programming current level.
摘要:
An integrated eFUSE device is formed by forming a silicon “floating beam” on air, whereupon the fusible portion of the eFUSE device resides. This beam extends between two larger, supporting terminal structures. “Undercutting” techniques are employed whereby a structure is formed atop a buried layer, and that buried layer is removed by selective etching. Whereby a “floating” silicide eFUSE conductor is formed on a silicon beam structure. In its initial state, the eFUSE silicide is highly conductive, exhibiting low electrical resistance (the “unblown state of the eFUSE). When a sufficiently large current is passed through the eFUSE conductor, localized heating occurs. This heating causes electromigration of the silicide into the silicon beam (and into surrounding silicon, thereby diffusing the silicide and greatly increasing its electrical resistance. When the current source is removed, the silicide remains permanently in this diffused state, the “blown” state of the eFUSE.
摘要:
An e-fuse structure and method has an anode; a fuse link (a first end of the fuse link is connected to the anode); a cathode (a second end of the fuse link opposite the first end is connected to the cathode); and a silicide layer on the fuse link. The silicide layer has a first silicide region adjacent the anode and a second silicide region adjacent the cathode. The second silicide region comprises an impurity not contained within the first silicide region. Further, the first silicide region is thinner than the second silicide region.
摘要:
A semiconductor device includes: an e-fuse gate, a floating pattern between the e-fuse gate and an e-fuse active portion, a blocking dielectric pattern between the floating pattern and the e-fuse gate, and an e-fuse dielectric layer between the floating pattern and the e-fuse active portion. The floating pattern includes a first portion between the e-fuse gate and the e-fuse active portion and a pair of second portions extended upward along both sidewalls of the e-fuse gate from both edges of the first portion.
摘要:
A fuse structure includes a non-planar fuse material layer typically located over and replicating a topographic feature within a substrate. The non-planar fuse material layer includes an angular bend that assists in providing a lower severance current within the non-planar fuse material layer.
摘要:
The present invention provides an electrical fuse structure for achieving a post-programming resistance distribution with higher resistance values and to enhance the reliability of electrical fuse programming. A partly doped electrical fuse structure with undoped semiconductor material in the cathode combined with P-doped semiconductor material in the fuselink and anode is disclosed and the data supporting the superior performance of the disclosed electrical fuse is shown.
摘要:
A fuse structure, a method for fabricating the fuse structure and a method for programming a fuse within the fuse structure each use a fuse material layer that is used as a fuse, and located upon a monocrystalline semiconductor material layer in turn located over a substrate. At least part of the monocrystalline semiconductor material layer is separated from the substrate by a gap. Use of the monocrystalline semiconductor material layer, as well as the gap, provides for enhanced uniformity and reproducibility when programming the fuse.