摘要:
A system for changing a control-mode of an automated vehicle from automated-control to manual-control includes an operator-detection device and a controller. The operator-detection device is operable to detect a readiness-state of an operator of a vehicle while a control-mode of the vehicle is automated-control. The controller is configured to forecast a future-time when the control-mode of the vehicle should change from automated-control to manual-control and determine a take-over-interval for an operator to assume manual-control of the vehicle once notified. The take-over-interval is determined based on the readiness-state. The controller is also configured to notify the operator that the control-mode of the vehicle should change from automated-control to manual-control no later than the take-over-interval prior to the future-time.
摘要:
A destination-less travel system for an automated-vehicle includes a digital-map and a controller. The digital-map indicates route-options for a host-vehicle. The controller is in communication with the digital-map and an operator of the host-vehicle. The controller queries the operator regarding the route-options when no destination has been specified and the host-vehicle approaches a decision-point on a roadway traveled by the host-vehicle.
摘要:
A system for automated operation of a vehicle includes an infotainment-device and a controller. The infotainment-device is operable to provide an infotainment-activity to an operator of a vehicle. The controller is operable to estimate a take-over-interval for an operator to prepare for a mode-transition from automated-control of the vehicle by the controller to manual-control of the vehicle by the operator. The take-over-interval is determined based on the infotainment-activity of the operator. The controller is operable to notify the operator that the mode-transition is needed at least the take-over-interval prior to a take-over-time.
摘要:
A system for automated operation of a host-vehicle includes a sensor, a data-source, and a controller. The sensor is installed in a host-vehicle. The sensor is operable to determine a state-of-awareness of an operator of the host-vehicle. The data-source provides route-data used for automated operation of the host-vehicle. The route-data includes a map and a control-rule for navigating the map. The controller is in communication with the sensor and the data-source. The controller is configured to operate the host-vehicle during automated operation of the host-vehicle in accordance with the route-data. The controller is also configured to modify the control-rule based on the state-of-awareness of the operator.
摘要:
A system for automated operation of a vehicle includes an infotainment-device and a controller. The infotainment-device is operable to provide an infotainment-activity to an operator of a vehicle. The controller is operable to estimate a take-over-interval for an operator to prepare for a mode-transition from automated-control of the vehicle by the controller to manual-control of the vehicle by the operator. The take-over-interval is determined based on the infotainment-activity of the operator. The controller is operable to notify the operator that the mode-transition is needed at least the take-over-interval prior to a take-over-time.
摘要:
A system for automated operation of a host-vehicle includes a vehicle-control device, an object-detection device, and a controller. The vehicle-control device is operable to control one or more of acceleration of the host-vehicle, braking of the host-vehicle, and steering of the host-vehicle. The object-detection device is operable to detect a rearward-vehicle located behind the host-vehicle. The controller is configured to determine when the object-detection device indicates that a rear-end collision into the host-vehicle by the rearward-vehicle is imminent, and operate the vehicle-control device to reduce the effect of the rear-end collision experienced by an operator of the host-vehicle when the rear-end collision is imminent.
摘要:
A system for operating an automated vehicle in accordance with an operation-rules that are based on an automation-level of an other-vehicle includes an automation-detector and a controller. The automation-detector conveys an automation-level indicated by an other-vehicle proximate to a host-vehicle. The controller is in communication with the automation-detector. The controller operates the host-vehicle in accordance with an operation-rule that is selected based on the automation-level of the other-vehicle. For example, the controller operates the host-vehicle to follow the other-vehicle at a first-distance when the automation-level is an autonomous-mode, and follow the other-vehicle at a second-distance greater than the first-distance when the automation-level is a manual-mode, i.e. human-driven.
摘要:
A gesture detection system suitable to operate an automated vehicle includes a gesture-detection-device, a pedestrian-detection-device, and a controller. The gesture-detection-device is used to detect a gesture made by an occupant of a host-vehicle. The pedestrian-detection-device is used to detect a pedestrian proximate to the host-vehicle. The controller is in communication with the gesture-detection-device and the pedestrian-detection-device. The controller is configured to control movement of the host-vehicle along a travel-path of the host-vehicle. The controller waits to move the host-vehicle until after the pedestrian crosses the travel-path when the occupant gestures to the pedestrian to proceed across the travel-path.
摘要:
A system for automated operation of a host-vehicle includes a sensor and a controller. The sensor is configured to detect an other-vehicle proximate to a host-vehicle. The controller is in communication with the sensor. The controller is configured to determine a behavior-classification of the other-vehicle based on lane-keeping-behavior of the other-vehicle relative to a roadway traveled by the other-vehicle, and select a travel-path for the host-vehicle based on the behavior-classification. In one embodiment, the behavior-classification of the other-vehicle is based on a position-variation-value indicative of how much an actual-lane-position of the other-vehicle varies from a center-lane-position of the roadway. In yet another embodiment, the behavior-classification of the other-vehicle is based on a vector-difference-value indicative of how much a vehicle-vector of the other-vehicle differs from a lane-vector of the roadway.