Abstract:
An LED based light and a method of providing power to the LED are disclosed. The LED based light includes at least one LED and at least one thermoelectric generator having a first side and a second side. The first side is thermally coupled to the at least one LED such that heat generated by the at least one LED is conducted to the at least one thermoelectric generator, producing a temperature differential between the first side and second side. The at least one thermoelectric generator is configured to produce electrical energy from the temperature differential.
Abstract:
An LED-based light can include a highly thermally conductive base having multiple radially outward projecting nodes. The nodes can be spaced apart in an axial and circumferential directions of the base. An electrical connector and at least one LED can be attached to the base, and a light transmitting bulb can be attached to the base and can cover the at least one LED. The geometry of the base can promote heat dissipation, which can allow the at least one LED to use enough power to produce an amount of luminosity that allows the LED-based light to replicate, for example, an incandescent light without overheating.
Abstract:
A lighting and communication system for use in a standardized light fixture is provided. The lighting and communication system includes a light source and a communication apparatus including at least one of an audio device and a camera. At least one electrical connector configured for physical and electrical connection to the standardized light fixture is included, and the at least one electrical connector is electrically connected to the light source and the communication apparatus.
Abstract:
An emergency lighting system for a building includes at least one LED-based light. An emergency detector is operable to detect an emergency. The emergency detector produces an emergency signal in response to the emergency. A controller is operable to control the at least one LED-based light in response to the emergency signal.
Abstract:
An LED-based light for replacing a conventional fluorescent tube in a fixture is provided. The LED-based light includes an elongate light transmitting rod defining a bore and at least one LED positioned at one or both ends of the rod and oriented to produce light longitudinally into a portion of the rod radially outward of the bore. At least one connector is physically coupled to an end of the rod and electrically coupled to the at least one LED. The at least one connector is adapted for physical and electrical connection to the fixture. In operation, the directional light produced by the at least one LED is dispersed by way of reflection, refraction, and/or diffusion while traveling longitudinally through the rod to reduce the appearance of bright spots.
Abstract:
Disclosed herein are embodiments of LED-based lights for use in fluorescent fixtures that emanate light in a plurality of directions. One embodiment disclosed herein of an LED light for use in a fluorescent light fixture comprises a housing and a circuit board having a first surface configured to face an illumination area, the circuit board mounted in the housing and defining a plane conceptually dividing the housing into a first portion and a second portion. At least one LED is mounted on the first surface of the circuit board and is configured to emanate light in a first direction. Light distribution means is configured to distribute a portion of the light emanated in the first direction to at least a second direction different than the first direction.
Abstract:
Disclosed herein is a method of forming a LED-based light for replacing a conventional fluorescent bulb in a fluorescent light fixture including providing a heat sink of highly thermally conductive material having opposing longitudinally extending edges, mounting a plurality of LEDs in thermally conductive relation with the heat sink and enclosing the plurality of LEDs within a light transmitting cover such that the longitudinally extending edges engage an interior of the cover to support the heat sink within the light transmitting cover.
Abstract:
An LED-based light can be installed in a conventional light fixture. The LED-based light can include a sensor operable to output a first signal indicative of whether an area of one or more of the rooms is in an occupied state or a non-occupied state, and the LED-based light can also include an LED controller operable to control at least one LED in the light in response to the first signal. Additionally, the LED-based light can include a transmitter operable to output a second signal indicative of whether the area is in the occupied state or the non-occupied state to a building environment regulator.
Abstract:
A lighting and communication system for use in a standardized light fixture is provided. The lighting and communication system includes a light source and a communication apparatus, and the communication apparatus is at least one of an audio device or a camera. At least one electrical connector configured for physical and electrical connection to the standardized light fixture is included, and the at least one electrical connector is electrically connected to the light source and the communication apparatus.
Abstract:
A light modifier for an LED producing light about a central axis is provided. The light modifier includes a lens defining an indentation. The indentation is angled relative to the central axis by an amount less than a complementary angle of a critical angle of the lens along the indentation. The lens can reduce the appearance of a bright spot created by the LED.