Abstract:
Devices and methods are provided for determining the proximity of client nodes within a wireless-enabled communication environment. A first client node comprises a database containing identification data associated with a plurality of wireless network access nodes and fingerprint data associated with the client node and a plurality of second client nodes. As the fingerprint information is updated, it is processed by the first client node to identify second client nodes that have matching, or similar, fingerprint information. Those that do are determined to be within a viable device-to-device (D2D) communication range.
Abstract:
Devices and methods are provided for determining the proximity of client nodes within a wireless-enabled communication environment. A first client node comprises a database containing identification data associated with a plurality of wireless network access nodes and fingerprint data associated with the client node and a plurality of second client nodes. As the fingerprint information is updated, it is processed by the first client node to identify second client nodes that have matching, or similar, fingerprint information. Those that do are determined to be within a viable device-to-device (D2D) communication range.
Abstract:
A method of establishing communication links during a failure within a mobile communications network includes detecting disruptions in communications between a plurality of base stations and a plurality of mobile terminals. Survivability components are activated within the base station and the mobile terminal to operate in a survivability mode. The survivability mode enables communications and services to be provided by the surviving base stations to mobile terminals through activated survivability components. The alternate communication links may operate for as long as a disruption exists.
Abstract:
A method of establishing communication links during a failure within a mobile communications network includes detecting disruptions in communications between a plurality of base stations and a plurality of mobile terminals. Survivability components are activated within the base station and the mobile terminal to operate in a survivability mode. The survivability mode enables communications and services to be provided by the surviving base stations to mobile terminals through activated survivability components. The alternate communication links may operate for as long as a disruption exists.
Abstract:
A method and apparatus that allows a communication system to operate across multiple bands and access technologies and to dynamically assign bands to user equipment (UE) devices based on properties of the bands, traffic conditions, services being delivered and other considerations.
Abstract:
A method and apparatus that allows a communication system to operate across multiple bands and access technologies and to dynamically assign bands to user equipment (UE) devices based on properties of the bands, traffic conditions, services being delivered and other considerations.
Abstract:
A system and method for broadcasting a channel state information reference signal (CSI-RS) is disclosed. A CSI-RS that is orthogonal to CSI-RSs transmitted by each of a first network cell and each of a set of neighbor cells that interfere with the first network cell is identified. In one implementation, the first network cell has a coverage containing a coverage of a second network cell. The method includes transmitting, from the second network cell, the CSI-RS that is orthogonal to CSI-RSs transmitted by each of the first network cell and each of a set of interfering neighbor cells.
Abstract:
A system and method for broadcasting a channel state information reference signal (CSI-RS) is disclosed. A CSI-RS that is orthogonal to CSI-RSs transmitted by each of a first network cell and each of a set of neighbor cells that interfere with the first network cell is identified. In one implementation, the first network cell has a coverage containing a coverage of a second network cell. The method includes transmitting, from the second network cell, the CSI-RS that is orthogonal to CSI-RSs transmitted by each of the first network cell and each of a set of interfering neighbor cells.
Abstract:
An architecture, system and associated method for dynamic coordination of radio resource usage in a network environment. In one aspect, a method of processing sensory reports of one or more sensing elements in a radio network comprises receiving a sensory report from a sensing element operating in multiple radio access technologies, the sensory report including sensory data associated with multiple radio channels relative to at least one radio element; identifying the sensing element's identity and determining if the sensory report has been tagged with a code generated by a predetermined code generator; responsive to the identifying and the determining, authenticating the sensory report; and correlating the sensory report from the sensing element with at least one of one or more previous sensory reports from the sensing element and one or more previous sensory reports received from another sensing element.
Abstract:
A method of decoding a channel state information reference signal (CSI-RS) is presented. An indication of a resource element (RE) configuration allocated for transmission of CSI-RSs by a first cell is received from a second cell. The method includes at least one of using the indication of the RE configuration to decode a first CSI-RS received from the first cell, and using the indication of the RE configuration to mute one or more REs within a data channel transmission received from a third cell. The first cell, second cell and third cell may be associated within a CSI-RS group. In some cases, at least two of the first cell, the second cell, and the third cell are mutually interfering cells. The indication of the RE configuration may include a plurality of logical indices having incremental values, the plurality of logical indices identifying REs used to transmit CSI-RS.