Abstract:
Disclosed are multi-chambered cell co-culture systems. The systems can be utilized to encourage the growth and development of isolated cells in a dynamic three-dimensional in vitro environment. The cell chambers (10) of the system can be in biochemical communication with adjacent chambers containing cells of different types, but the different cell types are maintained physically separated from one another. In addition, the local environment of each cell chamber can be independently controlled. For example, fluid flow characteristics through a single cell chamber can be independently controlled and maintained for each separate chamber of the system.
Abstract:
Disclosed are multi-chambered cell co-culture systems. The systems can be utilized to encourage the growth and development of isolated cells in a dynamic three-dimensional in vitro environment. The cell chambers (10) of the system can be in biochemical communication with adjacent chambers containing cells of different types, but the different cell types are maintained physically separated from one another. In addition, the local environment of each cell chamber can be independently controlled. For example, fluid flow characteristics through a single cell chamber can be independently controlled and maintained for each separate chamber of the system.
Abstract:
An introducer assembly for introducing a stent-graft or other device into a vessel of a patient is provided with a dilator tip which is naturally curved, preferably to be substantially a U-shape. The dilator tip is flexible so as to be able to become substantially straight with a guide wire therein and yet to be able to curve back towards its natural curvature during deployment of an implant. The curvature of the dilator tip can ensure that the dilator tip does not cause damage to the vessel wall during deployment of an implant carried thereon, as can occur with straight dilator tips.
Abstract:
An electrospinning apparatus may include a first spinneret and a second spinneret, each including a reservoir and an orifice. The first and second spinnerets may have first and second electrical charges, respectively. The first spinneret orifice may be located substantially opposite the second spinneret orifice. The first and second spinnerets may be used to prepare a medical device defining a lumen with a proximal end, a distal end, a luminal surface and an abluminal surface. The first spinneret orifice distal end may be configured to be located outside of the medical device lumen and between about 0.1 inches and about 6.0 inches from the medical device abluminal surface. The second spinneret orifice distal end may be configured to be located in the medical device lumen and between about 0.1 inches and about 6.0 inches from the medical device luminal surface.
Abstract:
A delivery system for an intraluminal medical device comprises an elongate tubular sheath 20 and an elongate tubular pusher 50 slidably disposed within a lumen of the sheath and having a flexible configuration due to circumferentially-extending fins 154 along its exterior surface. The spacing and/or the size of the fins 154 may vary along the pusher 50. Different regions of the pusher 50 may be of materials with different flexibility.
Abstract:
There are disclosed apparatus and methods for treating tissue by delivering at least one therapeutic agent into the tissue. In one embodiment, the apparatus comprises a catheter (30, 40) and a balloon member (150) disposed on a distal region of the catheter. A plurality of pockets (164) are disposed on the balloon member (150), and a plurality of needles (180) are associated with each of the plurality of pockets. The plurality of needles (180) are configured to engage tissue when the balloon (150) is in the inflated state, and further are configured to disperse a therapeutic agent from an associated pocket (164) into the tissue when the balloon (150) is in the inflated state. A first needle (180a) of the plurality of needles may comprise a length that is different than a second needle (180b), permitting the delivery of first and second therapeutic agents to different depths within the tissue.
Abstract:
An apparatus and method is disclosed for establishing a one-time cryptographic pad between a communicating pair, a communicating pair comprising a pair of transmitter-receivers, each of the pair having a plurality of cryptographic devices in common. The communicating pair also store previously exchanged messages and transmissions, a transmission comprising secure data exchanged by the pair that is independent of message content. The first transmitter-receiver randomly selects a cryptographic device and a previous transmission or message that has been sent to the second transmitter-receiver. The first transmitter-receiver also randomly selects a reference to a message or transmission previously sent by the second transmitter-receiver. The first transmitter-receiver encrypts the previously sent transmission or message and the reference to the message or transmission previously sent by the second transmitter-receiver and sends to the second transmitter-receiver. The second transmitter-receiver discovers the encryption device used by the first transmitter-receiver, verifies the message or transmission sent by the first transmitter-receiver, and uses the decrypted reference to access the previously sent transmission or message, then uses the discovered encryption device to encrypt the previously sent transmission or message and sends to the first transmitter-receiver. The first transmitter-receiver decrypts the transmission or message previously sent by the second transmitter-receiver, and authenticates. If authentication is successful, the first transmitter-receiver encrypts using the randomly selected cryptographic device.
Abstract:
A method of forming a surface structure of a component of a medical devices includes forming a fatigue-resistant portion, which entails forming a first layer comprising a transition metal selected from the group consisting of Ta, Nb, Mo, V, Mn, Fe, Cr, Co, Ni, Cu, and Si on at least a portion of a surface of the component, where the surface comprises a nickel-titanium alloy, and alloying the transition metal of the first layer with the nickel-titanium alloy of the surface. The method further includes forming a rough outer surface of the fatigue-resistant portion where the rough outer surface is adapted for adhesion of a material thereto.