Abstract:
A monolithically integrated laser which is rapidly tunable over a wide optical frequency range comprises a frequency router formed in a semiconductive wafer defining a tuned cavity. A control circuit applies electrical energy to predetermined controllably transmissive waveguides connecting the frequency routing device with reflective elements defined in the wafer. This tunes the laser to a desired one of a plurality of optical frequencies. Application of such electrical energy creates frequency selective pathways through the wafer able to support selected lasing frequencies. This laser is economical to construct and is useful in high capacity, high speed optical communications networks.
Abstract:
A monolithically integrated laser which is rapidly tunable over a wide optical frequency range comprises a frequency router formed in a semiconductive wafer defining a tuned cavity. A control circuit applies electrical energy to predetermined controllably transmissive waveguides connecting the frequency routing device with reflective elements defined in the wafer. This tunes the laser to a desired one of a plurality of optical frequencies. Application of such electrical energy creates frequency selective pathways through the wafer able to support selected lasing frequencies. This laser is economical to construct and is useful in high capacity, high speed optical communications networks.
Abstract:
A tunable waveguide grating includes a plurality of N waveguides which define N optically transmissive pathways. A plurality of (N-1) electrodes are arranged in the pathways such that the kth pathway contains (k-1) electrodes, where 0
Abstract:
A parallel ring network is restorable upon sensing a failure of a transmission media. A central transmitter is coupled to one end of a first transmission medium. A central receiver is coupled to one end of a second transmission medium. A central sensor senses a transmission media failure centrally and provides a central alarm. In response to the central alarm, the central receiver is coupled to another end of the first transmission medium and the central transmitter is coupled to another end of the second transmission medium. At least one local station has a local receiver, a local transmitter, a local sensor for sensing a transmission media failure locally and providing a local alarm, and a local switch. In response to the local alarm, the local switch moves from a first position to a second position. When the local switch is in the first position, the local transmitter is coupled to the second transmission medium and the local receiver is coupled to the first transmission medium. When the local switching means is in the second position, the local transmitter is coupled to the first transmission medium and the local receiver is coupled to the second transmission medium. A method for restoring the parallel ring network is described.
Abstract:
A parallel ring network is restorable upon sensing a failure of a transmission media. A central transmitter is coupled to one end of a first transmission medium. A central receiver is coupled to one end of a second transmission medium. A central sensor senses a transmission media failure centrally and provides a central alarm. In response to the central alarm, the central receiver is coupled to another end of the first transmission medium and the central transmitter is coupled to another end of the second transmission medium. At least one local station has a local receiver, a local transmitter, a local sensor for sensing a transmission media failure locally and providing a local alarm, and a local switch. In response to the local alarm, the local switch moves from a first position to a second position. When the local switch is in the first position, the local transmitter is coupled to the second transmission medium and the local receiver is coupled to the first transmission medium. When the local switch is in the second position, the local transmitter is coupled to the first transmission medium and the local receiver is coupled to the second transmission medium. A method for restoring the parallel ring network is described.
Abstract:
A tunable laser formed on a semiconductive wafer comprising a plurality of monolithically integrated optical amplifiers and a planar optical multiplexer is disclosed. According to the invention, one of the optical amplifiers is activated by energy, which amplifier produces a signal. The signal is carried along a waveguide associated with the optical amplifier and enters a reflective Dragone router, which is the preferred optical multiplexer. The reflective Dragone router functions, in conjunction with the activated optical amplifier, to define a wavelength selective optically transmissive pathway to create lasing action. Facet mirrors are cleaved in the semiconductive wafer defining the lasing cavity which includes the optical amplifiers, associated waveguides and the reflective Dragone router.
Abstract:
An N.times.N passive star coupler can be used to provide a high performance optical data network to interconnect many users at gigabit rates. Ignoring excessive losses, a signal incident on any input port is divided equally between all of the output ports. The average power at all of the input ports N of the star is equal to the average power at all of the output ports N. But, the power per channel at each output port is equal to only 1/N of the applied power. This loss which is due to splitting cannot be recovered by an amplifier at either the input port or the output port of the star coupler unless the amplifier saturation power is greater than the transmitter power. This invention solves the problem of amplifier saturation. Briefly, a discrete optical frequency signal which, when combined in the star coupler produces identical frequency division multiplex spectra at each output port is applied to each input port of the passive star coupler and tunable fiber Fabry-Perot filters are coupled to the output ports of the star coupler. The optical filters select the various channels. An amplifier is positioned downstream of each optical filter. By placing the amplifiers after the optical filter, the power level applied to the amplifier is substantially 1/(2N) of the transmitter power and saturation of the amplifier is minimized as a constraint.
Abstract:
One aspect of the invention is a Fabry-Perot cavity which has in part a waveguiding portion and in part a nonwaveguiding portion. In this manner, a cavity is constructed whose length would be too short to manipulate effectively if it were comprises exclusively of a waveguiding portion, and whose length might have unacceptable diffraction losses if it were comprised exclusively of a nonwaveguiding portion. In the inventive device the resonant wavelength can be adjusted by varying the length of either the gap or the waveguide or both. The device can be advantageously constructed and aligned using fiber coupling technology.
Abstract:
It has been found that in a profiled optical waveguide for guiding a finite spectrum of light, reduction of total dispersion is possible by forming the overall profile in the waveguide as a composite of at least two profiles of different contour. The profiles contributing to the composite are formed for example through polarizability or density gradations in the waveguide.
Abstract:
A combined wavelength router and switch apparatus for use in an optical communication system is disclosed. The apparatus includes arrays of optical signal demultiplexers, wavelength division switches, space division switches and multiplexers, arranged in a manner that can increase the connectivity of an optical system using wavelength division multiplexed (WDM) signals. In several embodiments, time-multiplexed wavelength division switches and time-multiplexed space division switches may be used to increase further the degree of connectivity of the system or to reduce the number of wavelength division switches and space division switches required. Additional arrays of wavelength division switches or time-multiplexed wavelength division switches may be included to allow carrier frequencies to be shifted to meet the channel ordering requirements of the optical system.