Abstract:
A master unit configured to manage a plurality of remote units connected in a ring topology, the master unit comprising: a network management section configured to transmit at least one of a path-state monitoring control signal and a delay measurement control signal to the plurality of remote units in a first direction and a second direction which is a reverse direction of the first direction, and receives an acknowledgement signal in response to the at least one of a path-state monitoring control signal and a delay measurement control signal; and switching control means for transmitting a forward signal received from a base station in the first direction, and transmitting a switching control signal in the second direction when a defect is detected in any remote unit among the plurality of remote units by the network management section.
Abstract:
A relay method includes transmitting, by a first apparatus in a ring network, a first control frame in which information of the first apparatus is stored, through a first port different from a second port where a communication failure is detected; receiving, by a second apparatus in the ring network, the first control frame through a third port, when the communication failure does not occur at a side of a fourth port different from the third port: storing information of the second apparatus in the first control frame; and transmitting the first control frame through the fourth port; and when the communication failure occurs at the side of the fourth port, determining whether a data frame flowing into the ring network is affected by the communication failure for every VLAN (virtual local area network) based on the first control frame; and switching a communication path set in an affected VLAN.
Abstract:
A radio base station has a baseband unit (BB) and multiple RF heads (RH1, RH2), which are interconnected by means of a bi-directional two-fiber optical ring (R). Each RF head (RH1, RH2) has a delay counter (31) for determining a propagation delay (tL) on the ring (R) and a variable delay circuit (16, 26) for compensating a difference between the propagation delay on the ring and a predefined target delay (tRR). The delay counter counts (31) the delay between a test signal sent on the first fiber (F1) of the ring to the baseband unit and a received test signal looped back by the baseband unit on the second fiber (F2) of the ring.
Abstract:
An optical wavelength division multiplexing network has a multi-level structure where a plurality of optical network units (ONUs) are connected to a lowest-level network. A node apparatus connected to networks other than the lowest-level network includes (a) passive optical components to branch optical signals from a higher-level network to a lower-level network, and couple optical signals from the lower-level network to the higher-level network, and (b) optical amplifiers for the optical signals. A node apparatus connected to the lowest-level network includes (a) an optical multiplexer/de-multiplexer to de-multiplex optical signals from the higher-level network, selectively output an optical signal to each ONU, and multiplex wave-length specific optical signals from the ONUs into a multiplexed optical signal, and (b) optical amplifiers for the optical signals. The node apparatuses provide an optical communication path between the higher-level network and the lower-level (or lowest-level) network without converting the optical signals into electrical signals.
Abstract:
Optical communication networks having multiple interconnected optical rings and optical protection switching mechanism to reduce communication delays and improve optical signal-to-noise ratios. Optical ring networks using variable optical attenuators for protection switching are also described.
Abstract:
For the special conditions of optical metro ring networks with entirely passive nodes, the invention proposes an optical splitting device in front of the optical transceivers, which has an asymmetrical splitting ratio. The excess attenuation caused by the beam splitting for the two paths can be adapted to the asymmetrical fiber link attenuation of the respective paths the device is connected to.
Abstract:
A radio base station has a baseband unit (BB) and multiple RF heads (RH1, RH2), which are interconnected by means of a bi-directional two-fiber optical ring (R). Each RF head (RH1, RH2) has a delay counter (31) for determining a propagation delay (tL) on the ring (R) and a variable delay circuit (16, 26) for compensating a difference between the propagation delay on the ring and a predefined target delay (tRR). The delay counter counts (31) the delay between a test signal sent on the first fiber (F1) of the ring to the baseband unit and a received test signal looped back by the baseband unit on the second fiber (F2) of the ring.
Abstract:
Systems and methods are described for communications networks. A method, includes deploying a communication link, at least a portion of which is protected against active equipment failure, that includes a splitter-combiner communicatively coupled between a data drop/add device and a headend. The systems and methods provide advantages because a communication network can be protected, at least in-part, against active equipment (e.g., data drop/add device) failure, passive equipment (e.g., optical fiber) failure, and/or equipped for non-intrusive expansion of the network.
Abstract:
In a ring-shaped optical distributive network, provided with a central node and a number (N) of network nodes, distribution signals DS are transmitted in two signal transport directions (F, B) by the central node. For the execution of a drop-and-continue function (DC function), each network node comprises a coupling arrangement (21) provided with an optical 2.times.2 switch (28) and a tapping device (33). The switch and the tapping device are mutually coupled in such a way that the DC function can be carried out in a switchable manner in only one of both signal transport directions simultaneously. The switch (28) is turned over when distribution signals from a signal transport direction in a related network node are no longer received. Such a network is self-healing for a single network failure.
Abstract:
In a loop-type optical fiber transmission system composed of a master apparatus (50) and a plurality of slave apparatus (54), when an intensity of incident light (6B, 6C, 6E) to a first slave apparatus (55) is insufficient, the first slave apparatus (55) sends a status signal (CS.sub.b) informing malfunction in the light intensity to the master apparatus (50), the master apparatus upon receipt of the status signal from the first slave apparatus (55) sends a command signal to increase an output light intensity of a second slave apparatus (54) which is positioned at the upper stream of the first slave apparatus (55), and thus the intensity of the output light from the second slave apparatus (54) is increased.