Abstract:
In some implementations, a method includes analyzing an amount of data communicated by a set of network interfaces. The data communicated by the set of network interfaces is processed by a set of functional units and a set of queues includes the data communicated by the set of network interfaces. The method also includes activating a first functional unit of the set of functional units when a first size of a first queue of the set of queues is above a first threshold. The method further includes deactivating the first functional unit of the set of functional units when the first size of the first queue of the set of queues is below a second threshold. The method further includes causing the data to be forward to one or more active functional units via a data interconnect coupled to the set of network interfaces and the set of functional units.
Abstract:
In some implementations, a method includes analyzing an amount of data communicated by a set of network interfaces. The data communicated by the set of network interfaces is processed by a set of functional units and a set of queues includes the data communicated by the set of network interfaces. The method also includes activating a first functional unit of the set of functional units when a first size of a first queue of the set of queues is above a first threshold. The method further includes deactivating the first functional unit of the set of functional units when the first size of the first queue of the set of queues is below a second threshold. The method further includes causing the data to be forward to one or more active functional units via a data interconnect coupled to the set of network interfaces and the set of functional units.
Abstract:
Methods and systems to explicitly realign packets are described. The system includes a first communications device that receives a first stream of bytes comprising a first packet and generates realignment information for the first packet based on an alignment restriction. The first communications device further transmits a second stream of bytes over the data path comprising the first packet and the realignment information. The transmitting of the first byte of the first packet over the data path being in accordance with the alignment restriction that is associated with an interface. The realignment information identifies a difference between a time that the first byte of the first packet would have been transmitted by the first communications device without the alignment restriction and a time of transmission of the first byte of the first packet by the first communications device in accordance with the alignment restriction.
Abstract:
A method for verifying interconnection of a PSE and PD with 4-pair PoE capabilities includes performing a first classification event on first and second pairs, respectively, and detecting a first predetermined class current on first and second sets of twisted pairs, respectively. The method includes performing a second classification event on first and second pairs, respectively, and detecting first and second predetermined class currents on first and second pairs, respectively. After expiration of a first variable delay period related to a first pseudo-random variable of the PSE, the method includes performing a third classification event on the first pair and detecting a first derived class current on the first pair. After expiration of a second variable delay period related to a second pseudo-random variable of the PD, the method includes performing the third classification event on the second pair and detecting a second derived class current on the second pair.
Abstract:
In some implementations, a method includes analyzing an amount of data communicated by a set of network interfaces. The data communicated by the set of network interfaces is processed by a set of functional units and a set of queues includes the data communicated by the set of network interfaces. The method also includes activating a first functional unit of the set of functional units when a first size of a first queue of the set of queues is above a first threshold. The method further includes deactivating the first functional unit of the set of functional units when the first size of the first queue of the set of queues is below a second threshold. The method further includes causing the data to be forward to one or more active functional units via a data interconnect coupled to the set of network interfaces and the set of functional units.
Abstract:
Provided herein are systems, methods and devices for performing droop compensation. In particular, systems, methods and devices for performing droop compensation by modifying transmit and/or receive characteristics of a magnetic device based on changing conditions are described. For example, a plurality of operating parameters or characteristics can be measured, a droop compensation capability of a link partner can be determined and transmit and/or receive characteristics of the magnetic device can be modified based on the measured operating parameters or characteristics and the determined droop compensation capability.
Abstract:
Provided herein are systems, methods and devices for performing droop compensation. In particular, systems, methods and devices for performing droop compensation by modifying transmit and/or receive characteristics of a magnetic device based on changing conditions are described. For example, a plurality of operating parameters or characteristics can be measured, a droop compensation capability of a link partner can be determined and transmit and/or receive characteristics of the magnetic device can be modified based on the measured operating parameters or characteristics and the determined droop compensation capability.
Abstract:
An example method for intermittent encapsulation of preemptable network traffic at a network node can include receiving a frame at the network node and determining if the frame is a preemptable frame. A preemptable frame is a frame that can be preempted, suspended, interrupted, etc. after transmission begins in order to transmit a preemptive frame. If the frame is a preemptable frame, the method can include determining if the preemptable frame satisfies a selective encapsulation rule. If the preemptable frame does not satisfy the selective encapsulation rule, the method can include transmitting the preemptable frame from the network node without encapsulation. Alternatively, if the preemptable frame satisfies the selective encapsulation rule, the method can include encapsulating and transmitting the preemptable frame from the network node. The preemptable frame can be encapsulated with a preemption header and/or a preemption trailer.
Abstract:
An example method for intermittent encapsulation of preemptable network traffic at a network node can include receiving a frame at the network node and determining if the frame is a preemptable frame. A preemptable frame is a frame that can be preempted, suspended, interrupted, etc. after transmission begins in order to transmit a preemptive frame. If the frame is a preemptable frame, the method can include determining if the preemptable frame satisfies a selective encapsulation rule. If the preemptable frame does not satisfy the selective encapsulation rule, the method can include transmitting the preemptable frame from the network node without encapsulation. Alternatively, if the preemptable frame satisfies the selective encapsulation rule, the method can include encapsulating and transmitting the preemptable frame from the network node. The preemptable frame can be encapsulated with a preemption header and/or a preemption trailer.
Abstract:
A method for verifying interconnection of a PSE and PD with 4-pair PoE capabilities includes performing a first classification event on first and second pairs, respectively, and detecting a first predetermined class current on first and second sets of twisted pairs, respectively. The method includes performing a second classification event on first and second pairs, respectively, and detecting first and second predetermined class currents on first and second pairs, respectively. After expiration of a first variable delay period related to a first pseudo-random variable of the PSE, the method includes performing a third classification event on the first pair and detecting a first derived class current on the first pair. After expiration of a second variable delay period related to a second pseudo-random variable of the PD, the method includes performing the third classification event on the second pair and detecting a second derived class current on the second pair.