Abstract:
In accordance with embodiments of the present disclosure, a processing system may include multiple selectable processing paths for processing an analog signal in order to reduce noise, increase dynamic range, and mask audio artifacts associated with a change in noise floor. Techniques are employed to transition between processing paths and calibrate operational parameters of the two paths in order to reduce or eliminate artifacts caused by switching between processing paths.
Abstract:
A system may include a plurality of processing paths and a controller. The processing paths may include a first processing path configured to generate a first digital signal based on an analog input signal and one or more other processing paths each configured to consume a smaller amount of power than the first processing path, and each configured to generate a respective digital signal based on the analog input signal, wherein one of the other processing paths has a noise floor based on fidelity characteristics of the analog input signal or subsequent processing requirements of a digital output signal generated from at least one of the first digital signal and the respective digital signals. The controller may be configured to select one of the first digital signal and the respective digital signals as the digital output signal of the processing system based on a magnitude of the analog input signal.
Abstract:
In accordance with embodiments of the present disclosure, a processing system may include a plurality of processing paths and a controller. The plurality of processing paths may include a static processing path configured to generate a first digital signal based on an analog input signal and a dynamic processing path configured to generate a second digital signal based on the analog input signal, wherein a parameter of the dynamic processing path is determined based on a characteristic of the analog input signal. The controller may be configured to select the first digital signal as a digital output signal of the processing system when a change is occurring to the characteristic and select the second digital signal as the digital output signal in the absence of change occurring to the characteristic.
Abstract:
In accordance with embodiments of the present disclosure, a processing system may include multiple selectable processing paths for processing an analog signal in order to reduce noise and increase dynamic range. Techniques are employed to transition between processing paths and calibrate operational parameters of the two paths in order to reduce or eliminate artifacts caused by switching between processing paths.
Abstract:
A method may include processing an analog input signal with a first processing path configured to generate a first digital signal based on the analog input signal; processing the analog input signal with a second processing path configured to generate a second digital signal based on the analog input signal, and adapting a response of an adaptive filter configured to generate a filtered digital signal from the second digital signal to reduce a difference between the filtered digital signal and the first digital signal. The method may additionally or alternatively include determining nonlinearities present in the second processing path based on comparison of the first digital signal and the second digital signal, and applying a linear correction to the second digital signal to generate a corrected second digital signal with decreased nonlinearity from that of the second digital signal.
Abstract:
An analog conditioning circuit and a corresponding method for processing an analog input signal provide a conditioned analog signal for input into an analog processing circuit. The analog conditioning circuit comprises a main signal path between an input for receiving the analog input signal and an output for outputting the conditioned analog signal, wherein the transfer function of the main signal path is constrained by a transfer function requirement associated with the analog processing circuit; and a feedforward signal path comprising a first filtering block configured to attenuate desired frequencies of a first signal derived from the analog input signal to provide a filtered analog signal; wherein the feedforward signal path is configured to input the filtered analog signal into the main signal path such that the filtered analog signal is subtracted from a second signal derived from the analog input signal to provide the conditioned analog signal.
Abstract:
In accordance with embodiments of the present disclosure, a processing system may include multiple selectable processing paths for processing an analog signal in order to reduce noise, increase dynamic range, and mask audio artifacts associated with a change in noise floor. Techniques are employed to transition between processing paths and calibrate operational parameters of the two paths in order to reduce or eliminate artifacts caused by switching between processing paths.
Abstract:
A processing path may include a controller and a plurality of processing paths including a first processing path and a second processing path. The first path may be configured to generate a first digital signal based on an analog input signal and the second path may be configured to generate a second digital signal based on the analog input signal, wherein the first path has a lower gain and a higher noise floor than the second path. The controller may be configured to determine that a transition between the first path and the second path needs to occur based on the analog input signal crossing a threshold or a prediction that the input signal will cross the threshold and in response to determining the transition between the first path and the second path needs to occur, blend the transition during or near zero cross points of the analog input signal.
Abstract:
A method may include processing an analog input signal to generate a first digital signal in accordance with a first analog gain, processing the analog input signal to generate a second digital signal in accordance with a second analog gain, and generating a digital output signal of the processing system from one or both of the first digital signal and the second digital signal based on a magnitude of the analog input signal and setting the first analog gain based on the magnitude of the analog input when the digital output signal is generated from the second digital signal.
Abstract:
A processing path may include a controller and a plurality of processing paths including a first processing path and a second processing path. The first path may be configured to generate a first digital signal based on an analog input signal and the second path may be configured to generate a second digital signal based on the analog input signal, wherein the first path has a lower gain and a higher noise floor than the second path. The controller may be configured to determine that a transition between the first path and the second path needs to occur based on the analog input signal crossing a threshold or a prediction that the input signal will cross the threshold and in response to determining the transition between the first path and the second path needs to occur, blend the transition during or near zero cross points of the analog input signal.