Abstract:
Latent hydraulic materials are activated as residue from thermal processes by mechanochemical and/or tribomechanical reactions in a method for the production of an organic based binding agent. The lattice structures of the material mixture are altered by means of kinetic impingement, and the interaction of pulse and pulse interruption associated therewith, resulting in plasmoid particle states, the particle structure is altered by shock waves and/or by pent-up energy induced by the pulse and/or the pulse interruption. The particles are altered to form amorphous structured by the occurring pulses and pulse interruptions or reflections. The alterations occur by means of a device comprising an activator provided with a stator and a rotor arranged on a machine platform. The stator and the rotor define an annular chamber or annular gap as a transportation path for the material. Tools are associated with the annular gap of the stator and/or the rotor and are at least partially covered by a layer of the mixture. A dosing device and at least one air flow applied to other ring opening are arranged in front of the annular gap.
Abstract:
In a waste disposal site for storing waste and residues of solid organic or inorganic substances, composites and mixtures thereof, arranged in the ground (22) is a trough comprising a trough bottom (14) and side walls, the trough bottom of which contains at least two water-tight layers (B, C) with constituents of a ceramic binder system (CBS). Arranged flat between the top water-tight layer (C) and the waste material (24a) is at least one water-tight plastic film (26) on which compacted debris is stored as waste material (24a). Moreover, there is a covering which contains at least two water-tight layers (B, C) on which there is arranged at least one seepage layer for dissipating rainwater.
Abstract:
The invention relates to a novel device (10) for separating composite materials, comprising a cylindrical rotor (17), which has a shaft driven by a motor and strip-shaped first impacting tools (30), which are evenly distributed over the circumference and which protrude from the rotor parallel to the shaft, and comprising a cylindrical stator (12) that surrounds the rotor, wherein an annular space (32) is formed between the rotor and the stator. An air supply channel (15) opens into the upper region of the annular space (32) and an air removal channel (38) leads away from the lower region of the annular space. Furthermore, the cylindrical wall of the stator (12) has strip-shaped second impacting tools (31), which are evenly distributed over the circumference and which protrude radially inward.
Abstract:
The invention relates to a novel device (10) for separating composite materials, comprising a cylindrical rotor (17), which has a shaft driven by a motor and strip-shaped first impacting tools (30), which are evenly distributed over the circumference and which protrude from the rotor parallel to the shaft, and comprising a cylindrical stator (12) that surrounds the rotor, wherein an annular space (32) is formed between the rotor and the stator. An air supply channel (15) opens into the upper region of the annular space (32) and an air removal channel (38) leads away from the lower region of the annular space. Furthermore, the cylindrical wall of the stator (12) has strip-shaped second impacting tools (31), which are evenly distributed over the circumference and which protrude radially inward.
Abstract:
In a method for treating waste products and recycling products of solid organic or inorganic materials or composite materials or mixtures thereof, a breaking-up or separation of the components by means of an impulse is effected in the composite material or the mixture by a device which suddenly interrupts the flow of said composite material or mixture. Process air is fed in a counter-rotating, rising flow path (34) into the spiral-like downward transport path (32) generated in a rotor (26) having a vertical axis (A), and a shockwave is claimed to be generated between the layers of the composite material against a deflector wall of the rotor (26). In addition, two radially spaced, coaxially arranged wall faces rotate relatively to one another about their axis and the composite materials or mixtures moved by centrifugal forces are moved and broken up between deflector faces projecting radially from the deflector walls.
Abstract:
In a method for treating waste products and recycling products of solid organic or inorganic materials or composite materials or mixtures thereof, a breaking-up or separation of the components by means of an impulse is effected in the composite material or the mixture by a device which suddenly interrupts the flow of said composite material or mixture. Process air is fed in a counter-rotating, rising flow path into the spiral-like downward transport path generated in a rotor having a vertical axis and a shockwave is generated between the layers of the composite material against a deflector wall of the rotor. In addition, two radially spaced, coaxially arranged wall faces rotate relatively to one another about their axis and the composite materials or mixtures moved by centrifugal forces are moved and broken up between deflector faces projecting radially from the deflector walls.
Abstract:
Apparatus for treating composite elements for the recovery of valuable substances therefrom, including providing a flow path for a transport fluid carrying solid particles from the composite elements, an array of mutually successive acceleration tools which are moved relative to a stator and which each form in the flow direction a break-away edge for producing turbulence from the transport fluid and its solid particle load, wherein the accretion tools are arranged at a spacing relative to each other on a structural circle in a plurality of mutually superposed acceleration planes above a housing bottom on plates about a central shaft of a rotor and within a cylindrical wall of a housing as said stator.
Abstract:
In a process for treating composite elements of solid organic and/or inorganic composite materials-such as composites of metal/metal, plastic/plastic, metal/plastic or mineral composites with metals and/or plastic materials-solid particles are produced from the composite elements and they are added to a transport fluid, wherein at least one flow obstacle which crosses the flow of the mixture of solid particles and transport fluid is moved relative to said flow as a flow-breakaway edge for forming eddies which acceleratingly break up the mixture. The mixture is fed to the separation or break-up procedure at the flow-breakaway edge or edges with an acceleration of 20 to 25 m/sec.sup.2 and the composite element is preferably crushed prior to the separation or break-up procedure.