Abstract:
There are provided processes for recycling waste such as polystyrene thermoplastic polymer waste and/or polystyrene thermoplastic copolymer waste as well as recycled polystyrene thermoplastic polymer and/or recycled thermoplastic copolymer that may, for example, be obtained from such processes. The processes can comprise the use of a reducing agent.
Abstract:
A system for physically dismantling a solar cell module includes two fragmenting apparatuses. The solar cell module includes a cell encapsulation laminate, and a back plate and a cover plate respectively disposed on two opposite sides of the cell encapsulation laminate. Each fragmenting apparatus includes a platform, a fragmenting unit disposed on and movable relative to the platform in three axial directions for fragmenting one of the cell encapsulation laminate and the back plate of the solar cell module, and a material-collecting and sorting device connected to the platform and the fragmenting unit for collecting and sorting recycled materials produced by the fragmenting unit.
Abstract:
Methods and equipment for the recycling of carpet are disclosed that produce a clean fiber product suitable for industrial use. The methods allow the recovery of face fiber material, for example a polyester, polyolefin, or a polyamide, from carpets that includes a face fiber material, a polypropylene backing material, and an adhesive, and include the steps of mechanically impacting the carpet to break the bonds between the adhesive and the fibrous components, treating the fibrous components to remove adhesive granules from the fibrous components, and optionally separating the polypropylene backing from the face fiber. A clean adhesive/calcium carbonate product can also be produced from this process.
Abstract:
The present invention relates to a process for recovering individual polymers, such as nylon and polyolefin, from a nylon-containing source such as a carpet. The process includes the steps of shredding a nylon fiber source such as a carpet wherein the shredding is conducted in the presence of a liquid that wets the carpet, granulating the wet shredded carpet slurry, further diluting the granulated slurry by adding additional water, subsequently refining the fibers and removing substantial amounts of polypropylene fibers from the slurry, preferably using a lamella clarifier, and recovering the nylon fibers by hydrocloning the slurry.
Abstract:
A method for the removal of wood pulp and other adhering substances from waste plastics in the recycling of all types of waste plastics, of mixed plastics (MKS) in particular, in which foils and pieces from thicker plastic parts of if necessary pre-sorted waste plastics are mechanically pre-shredded into flakes or particles up to a preset size, wherein oversizes are sorted out, the shredded product is charged into a disc refiner together with water, wherein the proportion of flakes and other particles is at least 10% of the total volume, substances adhering on the flakes are rubbed down by the co-operating discs of the refiner to a large extent, and are then present as separate substances, and the substances rubbed down are separated from the plastic particles by a suitable separation method.
Abstract:
A method for processing a textile fraction, which was produced in the processing of discarded tires, includes: loosening the textile fraction, density separation of the loosened textile fraction by the force of gravity and air flow into a heavy material fraction and a light material fraction, separation of metallic components from the light material fraction contained in the air flow, and separation of the metal-reduced light material fraction from the air flow. The foregoing combination allows for such an effective separation of a major part of the non-textile components (rubber and in particular steel wires) from the textile fraction, and thus allows for the production of a “refined” textile fraction, that it is not possible to dispose of the latter or that the latter can only be recycled as energy, but rather that it may be fed into a material recycling process.
Abstract:
In a method and an arrangement for treating a light fraction that is produced during the treatment of plastic-rich waste that is low in metal, at least the following steps are carried out consecutively: the light fraction is stressed by percussion and/or bashing, the light fraction is classified into at least two light fraction classes, at least one light fraction class is separated into at least one light material fraction and a heavy material fraction, at least one light material fraction is cleaned. The cleaning of the light material fraction (fibrous material), obtained after the separation, provides a very clean initial substance to be obtained, resulting in clearly improved material recycling and energy recovery.
Abstract:
Disclosed are fine powder of waste polyurethane foam and a manufacturing method thereof. According to this invention, fine powder of waste polyurethane foam can be manufactured using a crushing process including primary and secondary coarse crushing steps and a fine grinding step and a classification process, thereby solving conventional problems of the deterioration of the properties and the difficulty forming a desired cell structure, due to the use of waste polyurethane powder having a large particle diameter, and widening the range of waste polyurethane that can be recycled.
Abstract:
Comminuted carpet pieces are fed to a first stirred tank together with an aqueous solution containing separating salt, to form a first suspension, which is fed to a first mechanical separating stage. A first high-solids phase, a second high-solids phase containing polymer fiber material, and a liquid phase are obtained therefrom. The second high-solids phase is mixed with a water-containing separation solution in a stirred tank, to give a second suspension, which is fed to a second mechanical separating stage. A third high-solids phase, a polymer fiber material-rich phase and a liquid phase are withdrawn therefrom. An acid which is stronger than H2CO3 is introduced into the stirred tank together with the water-containing separation solution, and the pH of the liquid in the stirred tank is adjusted to 2–6.
Abstract:
A process and apparatus for making crumb and powder rubber from preprocessed rubber particles. The process and apparatus provides an energy efficient operation wherein the preprocessed rubber particles are dried, precooled, frozen, comminuted and sized using a closed cryogenic fluid cycle.