摘要:
Composite ALD-formed diffusion barrier layers. In a preferred embodiment, a composite conductive layer is composed of a diffusion barrier layer and/or a low-resistivity metal layer formed by atomic layer deposition (ALD) lining a damascene opening in dielectrics, serving as diffusion blocking and/or adhesion improvement. The preferred composite diffusion barrier layers are dual titanium nitride layers or dual tantalum nitride layers, triply laminar of tantalum, tantalum nitride and tantalum-rich nitride, or tantalum, tantalum nitride and tantalum, formed sequentially on the opening by way of ALD.
摘要:
Composite ALD-formed diffusion barrier layers. In a preferred embodiment, a composite conductive layer is composed of a diffusion barrier layer and/or a low-resistivity metal layer formed by atomic layer deposition (ALD) lining a damascene opening in dielectrics, serving as diffusion blocking and/or adhesion improvement. The preferred composite diffusion barrier layers are dual titanium nitride layers or dual tantalum nitride layers, triply laminar of tantalum, tantalum nitride and tantalum-rich nitride, or tantalum, tantalum nitride and tantalum, formed sequentially on the opening by way of ALD.
摘要:
Composite ALD-formed diffusion barrier layers. In a preferred embodiment, a composite conductive layer is composed of a diffusion barrier layer and/or a low-resistivity metal layer formed by atomic layer deposition (ALD) lining a damascene opening in dielectrics, serving as diffusion blocking and/or adhesion improvement. The preferred composite diffusion barrier layers are dual titanium nitride layers or dual tantalum nitride layers, triply laminar of tantalum, tantalum nitride and tantalum-rich nitride, or tantalum, tantalum nitride and tantalum, formed sequentially on the opening by way of ALD.
摘要:
Composite ALD-formed diffusion barrier layers. In a preferred embodiment, a composite conductive layer is composed of a diffusion barrier layer and/or a low-resistivity metal layer formed by atomic layer deposition (ALD) lining a damascene opening in dielectrics, serving as diffusion blocking and/or adhesion improvement. The preferred composite diffusion barrier layers are dual titanium nitride layers or dual tantalum nitride layers, triply laminar of tantalum, tantalum nitride and tantalum-rich nitride, or tantalum, tantalum nitride and tantalum, formed sequentially on the opening by way of ALD.
摘要:
Semiconductor devices and methods of forming the semiconductor devices using an HTS (High Temperature Superconductor) layer in combination with a typical diffusion layer between the dielectric material and the copper (or other metal) conductive wiring. The HTS layer includes a superconductor material comprised of barium copper oxide and a rare earth element. The rare earth element yttrium is particularly suitable. For semiconductor devices having other semiconductor circuits or elements above the wiring, a capping layer of HTS material is deposited over the wiring before a cover layer of dielectric is deposited.
摘要:
Semiconductor devices and methods of forming the semiconductor devices using an HTS (High Temperature Superconductor) layer in combination with a typical diffusion layer between the dielectric material and the copper (or other metal) conductive wiring. The HTS layer includes a superconductor material comprised of barium copper oxide and a rare earth element. The rare earth element yttrium is particularly suitable. For semiconductor devices having other semiconductor circuits or elements above the wiring, a capping layer of HTS material is deposited over the wiring before a cover layer of dielectric is deposited.
摘要:
A method for capping copper or copper alloy interconnects. A dielectric layer is formed overlaying a semiconductor substrate. An opening is formed in the dielectric layer and subsequently embedded copper or copper alloy form an interconnect structure. A silicon layer is formed on the copper or copper alloy by sputtering or chemical vapor deposition. A copper silicide layer is formed by reacting the silicon layer with the underlying copper or copper alloy as a capping layer.
摘要:
A bonding structure and the method of fabricating the same are disclosed. The bonding structure of the invention includes a copper-based pad formed in an insulator layer and a protection layer substantially covering top surface of the copper-based pad. The protection layer is self-aligned formed and the material thereof is selected from a group consisting of metal nitride, copper alloy, copper compounds, and a combination thereof.
摘要:
A bonding structure and the method of fabricating the same are disclosed. The bonding structure of the invention includes a copper-based pad formed in an insulator layer and a protection layer substantially covering top surface of the copper-based pad. The protection layer is self-aligned formed and the material thereof is selected from a group consisting of metal nitride, copper alloy, copper compounds, and a combination thereof.
摘要:
A method of forming a more uniform copper interconnect layer is described. A dielectric layer, electroconductive (EC) layer, and a photoresist layer are sequentially deposited on a substrate. An opening in the photoresist is etched through the dielectric layer while the EC layer serves as a hard mask. Following deposition of a diffusion barrier layer and copper seed layer on the EC layer and in the opening, the copper seed layer is removed above the EC layer by a first CMP step. The EC layer serves as a CMP stop to protect the dielectric layer and provides a more uniform surface for subsequent steps. Copper is selectively deposited on the seed layer within the opening. A second CMP step lowers the copper layer to be coplanar with the dielectric layer and removes the EC layer. The resulting copper interconnect layer has a more uniform thickness and surface for improved performance.