摘要:
A method for acquiring a 3D image of a sample structure includes acquiring a first raw 2D set of 2D images of a sample structure at a limited number of raw sample planes; calculating a 3D image of the sample structure represented by a 3D volumetric image data set; and extracting a measurement parameter from the 3D volumetric image data set. A further number of interleaving 2D image acquisitions are recorded at a further number of interleaved sample planes which do not coincide with previous acquisition sample planes. The steps “calculating,” “extracting” and “assigning” are repeated for the further interleaving 2D set until convergence or a maximum number of 2D image acquisitions is recorded. A projection system used for such method comprises a projection light source, a rotatable sample structure holder and a spatially resolving detector. Such method can also be used to acquire virtual tomographic images of a sample.
摘要:
The invention relates to an optical system and, in particular for characterizing a microlithography mask, comprising a light source for generating light of a wavelength of less than 30 nm, an illumination beam path leading from the light source to an object plane, an imaging beam path leading from the object plane to an image plane and a beam splitter, via which both the illumination beam path and the imaging beam path run.
摘要:
An imaging optical unit for EUV microlithography is configured so that, when used in an optical system for EUV microlithography, relatively high EUV throughput and high imaging quality can achieved.
摘要:
The present application relates to a method for examining at least one element of a photolithographic mask for an extreme ultraviolet (EUV) wavelength range, wherein the method includes the steps of: (a) examining the at least one element with light in the EUV wavelength range; and (b) determining the behavior of the at least one element in the EUV wavelength range.
摘要:
A mirror for EUV radiation includes a mirror body, which has at least one EUV radiation-reflecting region and at least two EUV radiation-permeable regions. A spatial separation of the illumination and imaging beam paths is possible with small angles of incidence and a large object-side numerical aperture.
摘要:
The disclosure relates to a projection exposure apparatus for EUV microlithography which includes an illumination system for illuminating a pattern, and a projection objective for imaging the pattern onto a light-sensitive substrate. The projection objective has a pupil plane with an obscuration. The illumination system generates light with an angular distribution having an illumination pole which extends over a range of polar angles and a range of azimuth angles and within which the light intensity is greater than an illumination pole minimum value. From the illumination pole toward large polar angles a dark zone is excluded within which the light intensity is less than the illumination pole minimum value, and which has in regions a form corresponding to the form of the obscuration of the pupil plane.
摘要:
An EUV light source serves for generating a usable output beam of EUV illumination light for a projection exposure apparatus for projection lithography. The light source has an EUV generation device which generates an EUV raw output beam. The latter is circularly polarized. For the purposes of setting the polarization of the usable output beam and in respect of the polarization direction, a polarization setting device has a linearly polarizing effect on the raw output beam. This results in an EUV light source, which provides an improved output beam for a resolution-optimized illumination.
摘要:
An imaging catoptric optical unit has at least four mirror, which image an object field in an object plane into an image field in an image plane. A first chief ray plane of the optical unit is prescribed by propagation of a chief ray of a central object field point during the reflection at one of the mirrors. A second chief ray plane of the optical unit is prescribed by propagation of the chief ray of the central object field point during the reflection at one of the other mirrors. The two chief ray planes include an angle that differs from 0. In an alternative or additional aspect, the imaging optical unit, considered via the image field, has a maximum diattenuation of 10% or a diattenuation that prefers a tangential polarization of the imaging light for a respectively considered illumination angle. The result of both aspects is an imaging optical unit in which bothersome polarization influences are reduced during the reflection of imaging light at the mirrors of the imaging optical unit.
摘要:
The disclosure relates to optical systems of a microlithographic projection exposure apparatus, and to a microlithographic exposure method. According to an aspect of the disclosure, an optical system has a light source, a ray-splitting optical element, which splits a light ray incident on this element when the projection exposure apparatus is in operation into a first partial ray and a second partial ray, with the first and the second partial ray having mutually orthogonal polarization directions, and at least one ray-deflecting optical element for generating a desired polarized illumination setting from the first partial ray and the second partial ray, wherein the ray-splitting optical element is arranged such that light incident on this ray-splitting optical element when the projection exposure apparatus is in operation has a degree of polarization of less than one.