Abstract:
A permanent magnet includes at least two antiferromagnetic layers and at least two first ferromagnetic layers. A magnetization direction of each first ferromagnetic layer is set, by an exchange coupling, with one of the antiferromagnetic layers of the stack, parallel to and in the same direction as the magnetization directions of the other first ferromagnetic layers. The permanent magnet also includes at least one second ferromagnetic layer. A magnetization direction of each second ferromagnetic layer is pinned only by RKKY (Ruderman-Kittel-Kasuya-Yosida) coupling with at least one of the first ferromagnetic layers or with at least one other of the second ferromagnetic layers.
Abstract:
A magnetic field gradient sensor includes a support and a structure having at least a first and a second mobile element, at least one magnetic sensor, each magnetic sensor being mechanically secured to one of the first and/or second mobile elements so as to be able to apply a mechanical force to the structure in the presence of a magnetic field gradient, a coupler for coupling between the first and second mobile elements so that the structure can be moved in at least one balanced mechanical mode in the presence of a magnetic field gradient, and a sensor for measuring the movement of the structure at least in balanced mode.
Abstract:
A permanent magnet comprising an antiferromagnetic layer and a ferromagnetic layer having a first sub-layer made of a first type of ferromagnetic material, the first type of ferromagnetic material being an at least partially crystallized alloy of iron and cobalt, and a second sub-layer made of a second type of ferromagnetic material, this second type of ferromagnetic material also being an alloy of iron and cobalt in which the proportion of face-centered cubic crystals is less than the proportion of face-centered cubic crystals in the first type of ferromagnetic material.
Abstract:
A permanent magnet including, at least once per group of ten consecutive ferromagnetic layers, a growth layer directly interposed between a top antiferromagnetic layer of a previous pattern and a bottom antiferromagnetic layer of a following pattern. This growth layer is entirely realized in a nonmagnetic material chosen from the group made up of the following metals: Ta, Cu, Ru, V, Mo, Hf, Mg, NiCr and NiFeCr, or it is realized by a stack of several sublayers of nonmagnetic material disposed immediately on one another, at least one of these sublayers being entirely realized in a material chosen from the group. The thickness of the growth layer is greater than 0.5 nm.