摘要:
The electronic device is formed in a die including a body of semiconductor material having a first face covered by a covering structure and a second face. An integral thermal spreader of metal is grown galvanically on the second face during the manufacture of a wafer, prior to cutting into dice. The covering structure comprises a passivation region and a protective region of opaque polyimide; the protective region and the passivation region are opened above the contact pads for the passage of leads.
摘要:
The electronic device is formed in a die including a body of semiconductor material having a first face covered by a covering structure and a second face. An integral thermal spreader of metal is grown galvanically on the second face during the manufacture of a wafer, prior to cutting into dice. The covering structure comprises a passivation region and a protective region of opaque polyimide; the protective region and the passivation region are opened above the contact pads for the passage of leads.
摘要:
A method of producing suspended elements for electrical connection between two portions of a micro-mechanism that can move relative to one another provides for the formation of a layer of sacrificial material, the formation of the electrical connection elements on the layer of sacrificial material, and the selective removal of the layer of sacrificial material beneath the electrical connecting elements, the layer of sacrificial material being a thin film with at least one adhesive side that can be applied dry to the surface of the micro-mechanism.
摘要:
A method for the electrical and/or mechanical interconnection of components of a microelectronic system includes at least one first component and at least one second component to be connected, and at least one local Joule-effect micro-heater is incorporated in one of the first and second components at a respective soldering point therebetween. The method includes supplying electrical energy to the micro-heater to utilize the heat produced therefrom by the Joule effect to solder the first and second components at the respective soldering point.
摘要:
The electronic device is formed in a die including a body of semiconductor material having a first face covered by a covering structure and a second face. An integral thermal spreader of metal is grown galvanically on the second face during the manufacture of a wafer, prior to cutting into dice. The covering structure comprises a passivation region and a protective region of opaque polyimide; the protective region and the passivation region are opened above the contact pads for the passage of leads.
摘要:
The method comprises the steps of: forming an integrated device including a microactuator in a semiconductor material wafer; forming an immobilization structure of organic material on the wafer; simultaneously forming a securing flange integral with the microactuator and electrical connections for connecting the integrated device to a read/write head; bonding a transducer supporting the read/write head to the securing flange; connecting the electrical connections to the read/write head; cutting the wafer into dices; bonding the microactuator to a suspension; and removing the immobilization structure.
摘要:
To manufacture integrated semiconductor devices comprising chemoresistive gas microsensors, a semiconductor material body is first formed, on the semiconductor material body are successively formed, reciprocally superimposed, a sacrificial region of metallic material, formed at the same time and on the same level as metallic connection regions for the sensor, a heater element, electrically and physically separated from the sacrificial region and a gas sensitive element, electrically and physically separated from the heater element; openings are formed laterally with respect to the heater element and to the gas sensitive element, which extend as far as the sacrificial region and through which the sacrificial region is removed at the end of the manufacturing process.
摘要:
A microactuator is attached to a first face of a coupling formed on a suspension, so that an R/W transducer projects from an opposite face. A hole in the coupling permits passage of an adhesive mass interposed between a rotor of the microactuator and the R/W transducer. A strip of adhesive material extends between a die accommodating the microactuator and the coupling, and externally surrounds the microactuator. The coupling acts as a protective shield for the microactuator, both mechanically and electrically. The coupling covers the microactuator at the front, and prevents foreign particles from blocking the microactuator. In addition, the coupling electrically insulates the R/W transducer, which is sensitive to magnetic fields, from regions of the microactuator biased to a high voltage. With the coupling, the strip forms a sealing structure, which in practice surrounds the microactuator on all sides.
摘要:
A process for assembling a microactuator on a R/W transducer that includes forming a first wafer of semiconductor material having a plurality of microactuators including suspended regions and fixed regions separated from each other by first trenches; forming a second wafer of semiconductor material comprising blocking regions connecting mobile and fixed intermediate regions separated from each other by second trenches; bonding the two wafers so as to form a composite wafer wherein the suspended regions of the first wafer are connected to the mobile intermediate regions of the second wafer, and the fixed regions of the first wafer are connected to the fixed intermediate regions of the second wafer; cutting the composite wafer into a plurality of units; fixing the mobile intermediate region of each unit to a respective R/W transducer; and removing the blocking regions. The blocking regions are made of silicon oxide, and the intermediate regions are made of polycrystalline silicon.
摘要:
To reduce the risk of breakage of the moving parts of an integrated microstructure during manufacture steps causing mechanical stresses to the moving parts, a temporary immobilization and support structure is formed, whereby a moving region of the microstructure is temporarily integral with the fixed region. The temporary structure is removed at the end of the assembly operations by non-mechanical removal methods. According to one solution, the temporary structure is formed by a fusible element removed by melting or evaporation, by applying a sufficient quantity of energy thereto. Alternatively, a structural region of polymer material is formed in the trench separating the moving part from the fixed part, or an adhesive material layer sensitive to ultraviolet radiation is applied.