Abstract:
A display panel, including: a plurality of pixels arranged in an array in a first direction and a second direction intersecting the first direction, each pixel including: a first sub-pixel having a first light-emitting zone configured to emit light of a first color; a second sub-pixel having a second light-emitting zone configured to emit light of a second color; and a third sub-pixel having a third light-emitting zone configured to emit light of a third color, wherein the plurality of pixels include a first pixel, the first light-emitting zone of the first pixel has a substantially polygonal shape, the substantially polygonal shape including: a first side substantially parallel to one side of the second light-emitting zone of the first pixel, and the one side of the second light-emitting zone of the first pixel being opposite to the first light-emitting zone; and a second side substantially parallel to one side of the third light-emitting zone of the first pixel, and the one side of the third light-emitting zone of the first pixel being opposite to the first light-emitting zone.
Abstract:
A display panel, including: a plurality of pixels arranged in an array in a first direction and a second direction intersecting the first direction, each pixel including: a first sub-pixel having a first light-emitting zone configured to emit light of a first color; a second sub-pixel having a second light-emitting zone configured to emit light of a second color; and a third sub-pixel having a third light-emitting zone configured to emit light of a third color, wherein the plurality of pixels include a first pixel, the first light-emitting zone of the first pixel has a substantially polygonal shape, the substantially polygonal shape including: a first side substantially parallel to one side of the second light-emitting zone of the first pixel, and the one side of the second light-emitting zone of the first pixel being opposite to the first light-emitting zone; and a second side substantially parallel to one side of the third light-emitting zone of the first pixel, and the one side of the third light-emitting zone of the first pixel being opposite to the first light-emitting zone.
Abstract:
A touch display screen testing method and a touch display screen testing device are provided. The method includes: applying a direct current signal to a gate driving circuit of the touch display screen to turn on gate electrodes of the touch display screen simultaneously, to detect a display defect of the touch display screen, in a first testing stage of an electric performance testing process at a Cell stage of a touch display screen.
Abstract:
The embodiments of the present disclosure provide a polysilicon thin film transistor and manufacturing method thereof, an array substrate, and a display panel. The method for manufacturing a polysilicon thin film transistor comprises: forming, on a substrate, a gate, a source and a drain, and an active layer. Forming the active layer comprises: forming a polysilicon layer on the substrate, which comprises a channel region and extension regions; performing ion injection process in the extension regions to form lightly-doped regions close to the channel region and a source region and a drain region; prior to or following the formation of the lightly-doped regions, employing halo ion injection process to form halo regions at the positions of the channel region which are close to the lightly-doped regions.
Abstract:
The embodiments of the present invention disclose a low temperature poly-silicon (LTPS) transistor array substrate and a method of fabricating the same, and a display device. The LTPS transistor array substrate comprises a substrate; a poly-silicon semiconductor active region provided on the substrate; a gate insulated from the poly-silicon semiconductor active region; and a dielectric spacer region provided on a side wall of the gate, wherein a portion of the poly-silicon semiconductor active region corresponding to the dielectric spacer region comprises a buffer region, and the dielectric spacer region surrounds the side wall of the gate and covers the buffer region.
Abstract:
The present disclosure discloses an OLED pixel circuit, a display apparatus, and a control method. The OLED pixel circuit includes an OLED; a driving transistor a drain electrode of which is connected with the OLED; a first switching unit configured to output, during a light-emitting stage, a power source signal to a source electrode of the driving transistor; a second switching unit configured to output, during a present scanning stage, a data signal to a gate electrode of the driving transistor; a compensation unit having a capacitor, and a charging control unit configured to output, during a charging stage, a charging signal to the capacitor for charging the capacitor so that the capacitor can maintain, during the light-emitting stage, a voltage of the gate electrode of the driving transistor. The charging signal has a voltage value greater than an actual voltage value of the data signal.
Abstract:
Embodiments of the present invention disclose a manufacturing method of a thin film transistor, a thin film transistor, an array substrate and a display device. The manufacturing method of a thin film transistor includes a step of forming an active layer, and the step of forming an active layer includes: forming a first poly-silicon layer and a second poly-silicon layer on the first poly-silicon layer separately, and adding dopant ions into the second poly-silicon layer and an upper surface layer of the first poly-silicon layer. By using the manufacturing method of a thin film transistor, defect states and unstable factors of interface in the thin film transistor can be reduced, thereby improving stability of the LTPS thin film transistor and obtaining an array substrate and a display device having more stable performance.
Abstract:
A pixel driving circuit, array substrate and display apparatus, comprise: data line for providing data voltage; gate line for providing scanning voltage; first power supply line for providing first power supply voltage; second power supply line for providing second power supply voltage; light emitting device connected to second power supply line; driving transistor connected to first power supply line; storage capacitor having first terminal connected to gate of driving transistor and configured to transfer information to gate of driving transistor; resetting unit configured to reset voltage across storage capacitor as predetermined signal voltage; data writing unit configured to write information into second terminal of storage capacitor; compensating unit configured to write information into first terminal of storage capacitor; and light emitting control unit configured to write first power supply voltage into second terminal of storage capacitor and control driving transistor to drive light emitting device to emit light.
Abstract:
There provide a pixel driving circuit and driving method thereof, an array substrate and display apparatus, wherein the pixel driving circuit comprises: a data line; a gate line; a first power supply line; a second power supply line; a light emitting device connected to the second power supply line; a driving transistor connected to the first power supply line; a storage capacitor having a first terminal connected to a gate of the driving transistor and configured to transfer information including the data voltage to the gate of the driving transistor; a resetting unit configured to reset a voltage across the storage capacitor as a predetermined signal voltage; a data writing unit configured to write information including the data voltage into the second terminal of the storage capacitor; a compensating unit configured to write information including a threshold voltage of the driving transistor and information of the first power supply voltage into the first terminal of the storage capacitor; and a light emitting control unit connected to the storage capacitor, the driving transistor and the light emitting device, and configured to control the driving transistor to drive the light emitting device to emit light.
Abstract:
The present invention provides a pixel circuit, a driving method thereof and a display device which are related to the field of display technology. The pixel circuit comprises a reset module, a compensation module, an energy storage module, a drive module, a drive control module, a power supply module and a light emitting module, the input voltage of the third power supply signal terminal is larger than the difference between the input voltage of the data signal terminal and the threshold voltage of the drive module, and is less than the input voltage of the second power supply signal terminal. The present invention is capable of discharging the driving transistor to a potential Vth within a short period, ensuring the driving transistor to be discharged completely in a short time.