Abstract:
A method of removing, or otherwise rendering non-conductive, unwanted carbon nanotubes (132) from an electronic device (100) includes exposing at least a portion of the device to light emitted by one or more of light sources (202) that emit light. Those regions of the device that have wanted carbon nanotubes formed thereon can be selectively masked, by various methods, from the emitted light.
Abstract:
An electronic circuit apparatus (5) for a field emission device (14) comprises a charge emission device electrically connected to a charge ballast electronic circuit (13,15). The charge ballast electronic circuit includes a capacitance device (25,26) electrically connected in series with a transistor (10,12) and electrically connected in parallel with a resistor (28,23) where the capacitance is chosen to adjust a charge emitted by the field emission device.
Abstract:
A method for forming a housing for an electronic device (510) includes providing a first rigid layer (102, 302) including a curved surface defining a cavity (108, 308). A first adhesive (112, 312) is optionally applied over the curved surface, and an electro-optic module (105, 305) having a flexible substrate and a viewable surface (111, 311), is conformally fitted on the first adhesive (112, 312). A second adhesive (114, 314) is optionally disposed over the electro-optic module (105, 305) and a support structure (122) is optionally placed on the second adhesive (114). The support structure (122) includes an attachment apparatus (126) for mounting electronic circuitry. The first and second adhesives (112, 114) are cured. One of the second adhesive (114) or both the first rigid layer (102, 301) and the first adhesive (112) are transparent for viewing a viewable surface (111, 311) on or coupled to the electro-optic module (105, 305).
Abstract:
An apparatus is provided for growing high aspect ratio emitters (26) on a substrate (13). The apparatus comprises a housing (10) defining a chamber and includes a substrate holder (12) attached to the housing and positioned within the chamber for holding a substrate having a surface for growing the high aspect ratio emitters (26) thereon. A heating element (17) is positioned near the substrate and being at least one material selected from the group consisting of carbon, conductive cermets, and conductive ceramics. The housing defines an opening (15) into the chamber for receiving a gas into the chamber for forming the high aspect ratio emitters (26).
Abstract:
An exemplary system and method for providing a multi-layer klystron-type electron beam device for the generation and amplification of millimeter-wave electromagnetic radiation is disclosed as comprising inter alia: a cathode layer (130); a collector layer (100); an extraction layer (120); a control layer (140); an input cavity (150); an output cavity (170); several ceramic spacer layers (103, 105, 107) dispose intermediately between the cathode (130) and the collector (100); and optionally, several magnetic ceramic layers (160, 165) for beam forming and focusing. After the klystron's layers are assembled, the device may be fired to form a substantially monolithic structure.
Abstract:
An emission device is provided for extracting electrons onto an anode of a visual display. The emission device (10) includes a conductivity limited material (18) positioned between first and second electrodes (14, 16) and having a surface (26). A plurality of catalytic nanoparticles (22) are distributed throughout the conductivity limited material (18), wherein some of the catalytic particles (22) are contiguous to the surface (26). A plurality of nanostructures (24), such as carbon nanotubes, are grown from the catalytic nanoparticles (22) contiguous to the surface (26). A voltage is applied across the conductivity limited material (18) having a plurality of catalytic particles (22) embedded therein, thereby causing the electrons to tunnel between the catalytic particles (22). An anode (28) is spaced apart from the nanostructures (24) for extracting and receiving electrons emitted from the nanostructures (24) when a first potential is applied across the first and second electrodes (14, 16) and a second potential is applied to the anode (28).
Abstract:
An apparatus is provided for reducing color bleed in a flat panel display. The apparatus comprises an anode (30) with a plurality of phosphors (28) of at least two colors sequentially disposed thereon. A cathode (14) is arranged in parallel opposed position to and separated from the anode (30) and contains a plurality of pads (40) of emitters. Each pad (40) is disposed on the cathode (14) in spaced relationship to and aligned with one of the at least two colors, respectively, wherein electrons from each of the plurality of pads of emitters that drift from its intended phosphor (28) are encouraged to drift toward an adjacent phosphor (28) of the same color.
Abstract:
A method for forming an electron emissive film (200, 730, 830) includes the steps of: (i) evaporating a graphite source (120, 620) in a cathodic arc deposition apparatus (100, 600) to create a carbon plasma (170, 670), (ii) applying a potential difference between the graphite source (120, 620) and a glass or silicon deposition substrate (130, 630, 710, 810) for accelerating the carbon plasma (170, 670) toward the deposition substrate (130, 630, 710, 810), (iii) providing a working gas within the cathodic arc deposition apparatus (100, 600), and (ii) depositing the carbon plasma (170, 670) onto the deposition substrate (130, 630, 710, 810).
Abstract:
A fabrication process is provided for reducing leakage current in a field emission display having at least one electron emitter (24) electrically coupled to a ballast resistor (16) coupled to a cathode metal (14), wherein at least one defect (28) extends to a gate electrode (20) from a region (22) electrically coupled to the ballast resistor, the method comprising heating (32) to reduce the resistance of the ballast resistor; and applying (34) a voltage between the cathode metal and the gate electrode thereby creating a current through the at least one defect to create an electrical open therein.
Abstract:
A spacer material is provided for a field emission display (10) with a cathode plate (12) having a plurality of electron emitters (44). An anode plate (14) is disposed to receive electrons emitted by the plurality of electron emitters (44), and includes an anode (26) designed to be connected to a potential source. A plurality of spacers (42) are positioned between the cathode plate (12) and the anode plate (14), the plurality of spacers (42) comprising a material that maintains a positive charge when the anode (26) is connected to the potential source.