Abstract:
Embodiments enable a network operator to use any (and a single) network management system (NMS) that it desires to manage a network having mixed fiber to the home optical network units (ONUs) and coaxial connected cable modems. For example, embodiments enable a cable company operator to use a DOCSIS (Data Over Cable Service Interface Specification) NMS (which the cable company already uses to manage its DOCSIS network) to manage such mixed network, by a simple addition of a DOCSIS Mediation Layer (DML) module between the NMS and the optical line terminal (OLT). On the other hand, embodiments enable a telephone company operator to use a standard EPON (Ethernet Passive Optical Network) OLT NMS with minor OLT and OAM (Operations, Administration, and Maintenance) protocol modifications to manage the same mixed network.
Abstract:
A communication device (alternatively, device) includes a processor configured to support communications with other communication device(s) and to generate and process signals for such communications. In some examples, the device includes a communication interface and a processor, among other possible circuitries, components, elements, etc. to support communications with other communication device(s) and to generate and process signals for such communications. Such a communication device includes a processor configured to perform codeword builder functionality to generate information that undergoes error checking and correction (ECC) and/or forward error correction (FEC) coding. The processor intelligently selects packets from buffers to generate information blocks that undergo ECC and/or FEC coding and transmission and to meet certain latency constraints in conjunction with a predetermined period of time (e.g., a programmable threshold). Such a communication device may be implemented in a point-to-multipoint communication system that services multiple other communication devices.
Abstract:
A method, system and computer program product in a downstream line card of a Cable Modem Termination System (CMTS) for managing downstream traffic for channels and bonded channel groups is provided herein. The method comprises the step of receiving packets for transmission to cable modems and classifying each packet to a flow based on class of service associated with the packet. The method further includes the step of storing the packets in flow queues based, wherein a flow queue is selected based on a flow a packet is associated with and wherein each flow corresponds to a single flow queue. The method also includes transmitting the packets from the flow queues to channel queues or bonded channel queues using corresponding channel nodes or bonded channel nodes at a rate that is determined based on feedback data and scheduling downstream transmission of packets on a single downstream channel if the packet is stored in a channel queue and on multiple downstream channels that are bonded together to form a bonded channel group if the packet is stored in a bonded channel queue. The feedback data is adjusted for each channel node or bonded channel node based on a queue depth for a corresponding channel queue or bonded channel queue.
Abstract:
Embodiments of a digital up-converter and an N-channel modulator are provided herein. The embodiments of the digital up-converter, in combination with the N-channel modulator, are capable of efficiently filling the spectrum of one or more RF signals with one or more types of information signals. For example, the digital up-converter can fill the spectrum of one or more RF signals with both broadcast and narrowcast video and data signals. In addition, the digital up-converter is capable of flexibly mapping the information signals to one or more channels of the one or more RF signals using a novel, three-level switching architecture.
Abstract:
A communication device (alternatively, device) includes a processor configured to support communications with other communication device(s) and to generate and process signals for such communications. In some examples, the device includes a communication interface and a processor, among other possible circuitries, components, elements, etc. to support communications with other communication device(s) and to generate and process signals for such communications. Such a communication device includes a processor configured to perform codeword builder functionality to generate information that undergoes error checking and correction (ECC) and/or forward error correction (FEC) coding. The processor intelligently selects packets from buffers to generate information blocks that undergo ECC and/or FEC coding and transmission and to meet certain latency constraints in conjunction with a predetermined period of time (e.g., a programmable threshold). Such a communication device may be implemented in a point-to-multipoint communication system that services multiple other communication devices.
Abstract:
Embodiments enable a network operator to use any (and a single) network management system (NMS) that it desires to manage a network having mixed fiber to the home optical network units (ONUs) and coaxial connected cable modems. For example, embodiments enable a cable company operator to use a DOCSIS (Data Over Cable Service Interface Specification) NMS (which the cable company already uses to manage its DOCSIS network) to manage such mixed network, by a simple addition of a DOCSIS Mediation Layer (DML) module between the NMS and the optical line terminal (OLT). On the other hand, embodiments enable a telephone company operator to use a standard EPON (Ethernet Passive Optical Network) OLT NMS with minor OLT and OAM (Operations, Administration, and Maintenance) protocol modifications to manage the same mixed network.
Abstract:
Embodiments of a digital up-converter and an N-channel modulator are provided herein. The embodiments of the digital up-converter, in combination with the N-channel modulator, are capable of efficiently filling the spectrum of one or more RF signals with one or more types of information signals. For example, the digital up-converter can fill the spectrum of one or more RF signals with both broadcast and narrowcast video and data signals. In addition, the digital up-converter is capable of flexibly mapping the information signals to one or more channels of the one or more RF signals using a novel, three-level switching architecture.