摘要:
A stream at a source device may be transmitted over multiple channels. At the input of the channels the packets from the stream may be grouped into chunks. Informational packets may be appended to the chunks. The informational packets may include sequencing information for the chunks and packet-to-packet timing information. The chunks may then be distributed over the multiple channels. After transmission over the channels, the informational packets may be extracted from the chunks. Reconstruction circuitry, at the destination device, may determine the sequence of the chunks at the source device based on the sequencing information. The reconstruction circuitry may also determine relative timings of the packets within the single stream based on the packet-to-packet timing information. The packets may be released from buffers in accord with the determined packet-to-packet timing information and the sequencing information to recreate the relative timings within the single stream at the destination device.
摘要:
Different data communication architectures receive a wide variety of content, including audio and video content, for consumers. The architectures employ channel bonding to deliver more bandwidth than any single communication channel can carry. In some implementations, the communication architectures receive distributed video programming in the form of MPEG2 TS packets, flagged by marker packets. Channel bonding synchronization information may be present in packets defined above the data-link layer or received in fields within data-link layer frames.
摘要:
A system for efficient memory bandwidth utilization may include a depacketizer, a packetizer, and a processor core. The depacketizer may generate header information items from received packets, where the header information items include sufficient information for the processor core to process the packets without accessing the payloads from off-chip memory. The depacketizer may accumulate multiple payloads and may write the multiple payloads to the off-chip memory in a single memory transaction when a threshold amount of the payloads have been accumulated. The processor core may receive the header information items and may generate a single descriptor for accessing multiple payloads corresponding to the header information items from the off-chip memory. The packetizer may generate a header for each payload based at least on on-chip information and without accessing off-chip memory. Thus, the subject system provides efficient memory bandwidth utilization, e.g. at least by reducing the number of off-chip memory accesses.
摘要:
A transponder-bonded receiver system with clock recovery may include memory an and one or more processors coupled to the memory and configured to execute one or more program modules to perform: receiving multiple data streams each including a number of data packets, and a number of marker packets with embedded bonding clock references (BCRs) and including marker packet information; adjusting arrival-time-stamps (ATSs) of the marker packets by using the BCRs and including capturing timing between the marker packets based on a local free running counter of the receiver; and determining an adjusted ATS corresponding to an ATS at the receiver for each of the plurality of packets using the ATS and a delta-ATS.
摘要:
A stream at a source device may be transmitted over multiple channels. At the input of the channels that packets from the stream may be grouped into chunks. Informational packets may be appended to the chunks. The informational packets may include sequencing information for the chunks and packet-to-packet timing information. The chunks may then be distributed over the multiple channels. After transmission over the channels, the informational packets may be extracted from the chunks. Reconstruction circuitry, at the destination device, may determine the sequence of the chunks at the source device based on the sequencing information. The reconstruction circuitry may also determine relative timings of the packets within the single stream based on the packet-to-packet timing information. The packets may be released from buffers in accord with the determined packet-to-packet timing information and the sequencing information to recreate the relative timings within the single stream at the destination device.
摘要:
Different data communication architectures deliver a wide variety of content, including audio and video content, to consumers. The architectures employ channel bonding to deliver more bandwidth than any single communication channel can carry. In some implementations, the communication architectures distribute video programming in the form of MPEG2 TS packets, flagged by marker packets, in a round-robin manner across the communication channels. Channel bonding synchronization information may be present in packets defined above the data-link layer or added to fields within data-link layer frames.
摘要:
A system for recovering channel bonded program streams may include filters and a collator. The filters may be configured to receive data streams that include multiple chunks of transport stream packets, and marker information items that are indicative of boundaries of the chunks, over multiple bonded channels, and to individually filter the data streams based at least on a utilized program identifier. The collator may be configured to collate the filtered data streams based at least on the marker information items to recover a program stream corresponding to the utilized program identifier. In one or more implementations, the filters may replace, or augment, the marker information items with marker packets that include a program identifier that is not being used for transmitted programs and/or that is reserved for marker packets. The collator may collate the filtered data streams based at least on the marker packets.
摘要:
A method of handling retransmission and memory consumption tracking of data packets includes storing data packets from different data channels in respective transmitter ring buffers allocated to the data channels when the data packets are not marked for retransmission, and facilitating retransmission of data packets from a specified ring buffer corresponding to a retransmission sequence number. The method also may include storing received data packets out of sequence in respective receiver ring buffers, marking a descriptor indicating a tail location of the stored data packets, and reclaiming memory space in the ring buffer based on the marked descriptor. The method may include storing a payload address associated with received data packets, marking a descriptor associated with the payload address to indicate the stored data packets have been consumed for processing, and reclaiming memory space when a register contains an indication of the stored payload address based on the marked descriptor.
摘要:
A transponder-bonded receiver system with clock recovery may include memory an and one or more processors coupled to the memory and configured to execute one or more program modules to perform: receiving multiple data streams each including a number of data packets, and a number of marker packets with embedded bonding clock references (BCRs) and including marker packet information; adjusting arrival-time-stamps (ATSs) of the marker packets by using the BCRs and including capturing timing between the marker packets based on a local free running counter of the receiver; and determining an adjusted ATS corresponding to an ATS at the receiver for each of the plurality of packets using the ATS and a delta-ATS.
摘要:
Different data communication architectures deliver a wide variety of content, including audio and video content, to consumers. The architectures employ channel bonding to deliver more bandwidth than any single communication channel can carry. In some implementations, channel bonding may be used to bond channels with mixed serial and parallel streams.