Abstract:
A wireless communications transmitter is divided into N binary weighted communication signal processing paths including both fixed and variable gain communication signal processing chains. Specific bit sequences are used to select a combination of fixed and variable gain signal processing paths to adjust to a desired transmitter output power. Alternately, high and low power communication signal processing paths are chosen as needed with the high power communication signal processing path including an odd order harmonic notch filter.
Abstract:
A transmitter circuit with a passive mixer network includes a first outbound signal path configured to carry a first outbound signal. The transmitter circuit includes a second outbound signal path configured to carry a second outbound signal. The transmitter circuit includes N passive mixers coupled to the first and second outbound signal paths and configured to up-convert the first and second outbound signals from a first frequency to a second frequency based on a clock cycle, where N is a positive even integer. The first and second outbound signals are passed through the N passive mixers during each phase of 2*N phases in the clock cycle. The transmitter circuit also includes N radio frequency signal paths coupled to an output of respective ones of the N passive mixers and configured to receive the first and second outbound signals in the second frequency during each phase of the clock cycle.
Abstract:
A transmitter includes a power amplifier driver connected with a first transformer and a second transformer. The first transformer is configured for a first band mode and the second transformer is configured for a second band mode. The power amplifier driver drives both the first transformer and the second transformer.
Abstract:
A wireless communications transmitter is divided into N binary weighted communication signal processing paths including both fixed and variable gain communication signal processing chains. Specific bit sequences are used to select a combination of fixed and variable gain signal processing paths to adjust to a desired transmitter output power. Alternately, high and low power communication signal processing paths are chosen as needed with the high power communication signal processing path including an odd order harmonic notch filter.
Abstract:
A transmitter includes a power amplifier driver to amplify a communication signal and a mixer connected with the power amplifier driver, the mixer to output the communication signal to the power amplifier driver. A capacitor and an inductor connect with the mixer and the power amplifier driver. The capacitor and the inductor create a resonant frequency to attenuate frequency components around a determined order of a local oscillator signal.
Abstract:
A transmitter includes a power amplifier driver connected with a first transformer and a second transformer. The first transformer is configured for a first band mode and the second transformer is configured for a second band mode. The power amplifier driver drives both the first transformer and the second transformer.
Abstract:
A SAW-less receiver includes an FEM interface module, an RF to IF receiver section, and a receiver IF to baseband section. The RF to IF receiver section includes a mixing module, a mixed buffer section, and a frequency translated BPF (FTBPF) circuit module. The mixing module converts an inbound RF signal into an in-phase (I) mixed signal and a quadrature (Q) mixed signal. The mixed buffer section filters and buffers the I mixed signal and filter and buffer the Q mixed signal. The FTBPF circuit module frequency translates a baseband filter response to an IF filter response such that the FTBPF circuit module filters undesired signal components of the IF I signal and the IF Q signal to produce an inbound IF signal. The receiver IF to baseband section converts the inbound IF signal into one or more inbound symbol streams.
Abstract:
A transceiver circuit including a digital-to-analog converter, a filter coupled to the digital-to-analog converter, a passive mixer coupled to the filter, via a buffer and a multi-stage power amplifier coupled to the passive mixer via a passive amplifier. A transmitter and method for amplifying a RF signal for transmission are also provided.
Abstract:
A transmitter includes a power amplifier driver to amplify a communication signal and a mixer connected with the power amplifier driver, the mixer to output the communication signal to the power amplifier driver. A capacitor and an inductor connect with the mixer and the power amplifier driver. The capacitor and the inductor create a resonant frequency to attenuate frequency components around a determined order of a local oscillator signal.
Abstract:
Aspects of a method and system for a low-noise, highly-linear receiver front-end are provided. In this regard, a received signal may be processed via one or more transconductances, one or more transimpedance amplifiers (TIAs), and one or more mixers to generate a first baseband signal corresponding to a voltage at a node of the receiver, and a second baseband signal corresponding to a current at the node of the receiver. The first signal and the second signal may be processed to recover information from the received signal. The first signal may be generated via a first one or more signal paths of the receiver and the second signal may be generated via a second one or more signal paths of the receiver.