Abstract:
Disclosed are various embodiments for transmitting radio frequency signals. A radio frequency transmitter may be configured to generate an analog signal comprising an in-phase component and a quadrature-phase component. The in-phase component and the quadrature-phase component of the analog signal may be provided to multiple radio frequency processing chains. One of the radio frequency processing chains may generate an output radio frequency signal based on the in-phase component and the quadrature-phase component.
Abstract:
A transmitter circuit with a passive mixer network includes a first outbound signal path configured to carry a first outbound signal. The transmitter circuit includes a second outbound signal path configured to carry a second outbound signal. The transmitter circuit includes N passive mixers coupled to the first and second outbound signal paths and configured to up-convert the first and second outbound signals from a first frequency to a second frequency based on a clock cycle, where N is a positive even integer. The first and second outbound signals are passed through the N passive mixers during each phase of 2*N phases in the clock cycle. The transmitter circuit also includes N radio frequency signal paths coupled to an output of respective ones of the N passive mixers and configured to receive the first and second outbound signals in the second frequency during each phase of the clock cycle.
Abstract:
Disclosed are various embodiments for transmitting radio frequency signals. A radio frequency transmitter may be configured to generate an analog signal comprising an in-phase component and a quadrature-phase component. The in-phase component and the quadrature-phase component of the analog signal may be provided to multiple radio frequency processing chains. One of the radio frequency processing chains may generate an output radio frequency signal based on the in-phase component and the quadrature-phase component.