摘要:
A method for providing (Al,Ga,In)N thin films on Ga-face c-plane (Al,Ga,In)N substrates using c-plane surfaces with a miscut greater than at least 0.35 degrees toward the m-direction. Light emitting devices are formed on the smooth (Al,Ga,In)N thin films. Devices fabricated on the smooth surfaces exhibit improved performance.
摘要:
A method for providing (Al,Ga,In)N thin films on Ga-face c-plane (Al,Ga,In)N substrates using c-plane surfaces with a miscut greater than at least 0.35 degrees toward the m-direction. Light emitting devices are formed on the smooth (Al,Ga,In)N thin films. Devices fabricated on the smooth surfaces exhibit improved performance.
摘要:
A dislocation-free high quality template with relaxed lattice constant, fabricated by spatially restricting misfit dislocation(s) around heterointerfaces. This can be used as a template layer for high In composition devices. Specifically, the present invention prepares high quality InGaN templates (In composition is around 5-10%), and can grow much higher In-composition InGaN quantum wells (QWs) (or multi quantum wells (MQWs)) on these templates than would otherwise be possible.
摘要:
A dislocation-free high quality template with relaxed lattice constant, fabricated by spatially restricting misfit dislocation(s) around heterointerfaces. This can be used as a template layer for high In composition devices. Specifically, the present invention prepares high quality InGaN templates (In composition is around 5-10%), and can grow much higher In-composition InGaN quantum wells (QWs) (or multi quantum wells (MQWs)) on these templates than would otherwise be possible.
摘要:
Disclosed is a method for processing GaN based substrate material for manufacturing light-emitting diodes, lasers, and other types of devices. In various embodiments, a GaN substrate is exposed to nitrogen and hydrogen at a high temperature. This process causes the surface of the GaN substrate to anneal and become smooth. Then other processes, such as growing epitaxial layers over the surface of GaN substrate, can be performed over the smooth surface of the GaN substrate.
摘要:
An epitaxial structure for a III-Nitride based optical device, comprising an active layer with anisotropic strain on an underlying layer, where a lattice constant and strain in the underlying layer are partially or fully relaxed in at least one direction due to a presence of misfit dislocations, so that the anisotropic strain in the active layer is modulated by the underlying layer.
摘要:
An epitaxial structure for a III-Nitride based optical device, comprising an active layer with anisotropic strain on an underlying layer, where a lattice constant and strain in the underlying layer are partially or fully relaxed in at least one direction due to a presence of misfit dislocations, so that the anisotropic strain in the active layer is modulated by the underlying layer.
摘要:
Methods for fabricating light emitting diode (LED) chips comprising providing a plurality of LEDs typically on a substrate. Pedestals are deposited on the LEDs with each of the pedestals in electrical contact with one of the LEDs. A coating is formed over the LEDs with the coating burying at least some of the pedestals. The coating is then planarized to expose at least some of the buried pedestals while leaving at least some of said coating on said LEDs. The exposed pedestals can then be contacted such as by wire bonds. The present invention discloses similar methods used for fabricating LED chips having LEDs that are flip-chip bonded on a carrier substrate and for fabricating other semiconductor devices. LED chip wafers and LED chips are also disclosed that are fabricated using the disclosed methods.
摘要:
A gallium and nitrogen containing substrate structure includes a handle substrate member having a first surface and a second surface and a transferred thickness of gallium and nitrogen material. The structure has a gallium and nitrogen containing active region grown overlying the transferred thickness and a recessed region formed within a portion of the handle substrate member. The substrate structure has a conductive material formed within the recessed region configured to transfer thermal energy from at least the transferred thickness of gallium and nitrogen material.
摘要:
A method for fabricating large-area nonpolar or semipolar GaN wafers with high quality, low stacking fault density, and relatively low dislocation density is described. The wafers are useful as seed crystals for subsequent bulk growth or as substrates for LEDs and laser diodes.