Abstract:
An apparatus for chemical mechanical polishing includes a rotatable platen having a surface to support a polishing pad, a carrier head to hold a substrate in contact with the polishing pad, and a polishing liquid distribution system. The polishing liquid distribution system includes a dispenser positioned to deliver a polishing liquid to a portion of a polishing surface of the polishing pad, and a curved barrier positioned after the dispenser to spread fresh polishing liquid from the dispenser.
Abstract:
An apparatus for chemical mechanical polishing includes a rotatable platen having a surface to support a polishing pad, a carrier head to hold a substrate in contact with the polishing pad, and a polishing liquid distribution system. The polishing liquid distribution system includes a dispenser positioned to deliver a polishing liquid to a portion of a polishing surface of the polishing pad, and a first barrier positioned before the portion of the polishing surface and configured to block used polishing liquid from reaching the portion of the polishing surface. The first barrier includes a solid first body having a first flat bottom surface and having a first leading surface configured to contact the used polishing liquid.
Abstract:
A difference between a first expected required polish time for a first substrate and a second expected required polish time for a second substrate is determined using a first pre-polish thickness and a second pre-polish thickness measured at an in-line metrology station. A duration of an initial period is determined based on the difference between the first expected required polish time and the second expected required polish time. For the initial period at a beginning of a polishing operation, no pressure is applied to whichever of the first substrate and the second substrate has a lesser expected required polish time while simultaneously pressure is applied to whichever of the first substrate and the second substrate has a greater expected required polish time. After the initial period, pressure is applied to both the first substrate and the second substrate.
Abstract:
An apparatus for chemical mechanical polishing includes a rotatable platen having a surface to support a polishing pad, a carrier head to hold a substrate in contact with the polishing pad, and a polishing liquid distribution system. The polishing liquid distribution system includes a dispenser positioned to deliver a polishing liquid to a portion of a polishing surface of the polishing pad, and a first barrier positioned before the portion of the polishing surface and configured to block used polishing liquid from reaching the portion of the polishing surface.
Abstract:
An apparatus for chemical mechanical polishing includes a rotatable platen having a surface to support a polishing pad, a carrier head to hold a substrate in contact with the polishing pad, and a polishing liquid distribution system. The polishing liquid distribution system includes a dispenser positioned to deliver a polishing liquid to a portion of a polishing surface of the polishing pad, and a first barrier positioned before the portion of the polishing surface and configured to block used polishing liquid from reaching the portion of the polishing surface.
Abstract:
An apparatus for chemical mechanical polishing includes a rotatable platen having a surface to support a polishing pad, a carrier head to hold a substrate in contact with the polishing pad, and a polishing liquid distribution system. The polishing liquid distribution system includes a dispenser positioned to deliver a polishing liquid to a portion of a polishing surface of the polishing pad, and a first barrier positioned before the portion of the polishing surface and configured to block used polishing liquid from reaching the portion of the polishing surface. The first barrier includes a solid first body having a first flat bottom surface and having a first leading surface configured to contact the used polishing liquid.
Abstract:
An apparatus for chemical mechanical polishing includes a rotatable platen having a surface to support a polishing pad, a carrier head to hold a substrate in contact with the polishing pad, and a polishing liquid distribution system. The polishing liquid distribution system includes a dispenser positioned to deliver a polishing liquid to a portion of a polishing surface of the polishing pad, and a first barrier positioned before the portion of the polishing surface and configured to block used polishing liquid from reaching the portion of the polishing surface.
Abstract:
A polishing station for polishing a substrate using a polishing slurry is disclosed. The polishing station includes a substrate carrier having a substrate-receiving surface and a rotatable platen having a polishing pad disposed on a platen surface, where the polishing pad has a polishing surface facing the substrate-receiving surface. The polishing station includes an electromagnetic assembly disposed over the platen surface. The electromagnetic assembly includes an array of electromagnetic devices that are each operable to generate a magnetic field that is configured to pass through the polishing surface. The magnetic fields generated by the array of electromagnetic devices are oriented and configured to induce an electromagnetic force on a plurality of charged particles disposed in a polishing slurry disposed on the polishing surface. The applied magnetic field is configured to induce movement of the plurality of charged particles in a direction parallel or orthogonal to the polishing surface.
Abstract:
An apparatus for chemical mechanical polishing includes a rotatable platen having a surface to support a polishing pad, a carrier head to hold a substrate in contact with the polishing pad, and a polishing liquid distribution system. The polishing liquid distribution system includes a dispenser positioned to deliver a polishing liquid to a portion of a polishing surface of the polishing pad, and a curved barrier positioned after the dispenser to spread fresh polishing liquid from the dispenser.
Abstract:
A difference between a first expected required polish time for a first substrate and a second expected required polish time for a second substrate is determined using a first pre-polish thickness and a second pre-polish thickness measured at an in-line metrology station. A duration of an initial period is determined based on the difference between the first expected required polish time and the second expected required polish time. For the initial period at a beginning of a polishing operation, no pressure is applied to whichever of the first substrate and the second substrate has a lesser expected required polish time while simultaneously pressure is applied to whichever of the first substrate and the second substrate has a greater expected required polish time. After the initial period, pressure is applied to both the first substrate and the second substrate.