Abstract:
A method of patterning a substrate is provided. The method includes modifying a surface of a metal-containing layer formed over a substrate positioned in a processing region of a processing chamber by exposing the surface of the metal-containing layer to plasma effluents of a chlorine-containing gas precursor and an oxygen-containing gas precursor to form a modified surface of the metal-containing layer. The method further includes directing plasma effluents of an inert gas precursor towards the modified surface of the metal-containing layer. The plasma effluents of the inert gas precursor are directed by applying a bias voltage to a substrate support holding the substrate. The method further includes anisotropically etching the modified surface of the metal-containing layer with the plasma effluents of the inert gas precursor to form a first recess having a first sidewall in the metal-containing layer.
Abstract:
A system and method for patterning a material layer on a substrate includes forming a hard mask layer on a material layer disposed on a substrate, and etching the material layer through the hard mask layer by simultaneously supplying an etching gas mixture and an oxygen containing gas. The etching gas mixture is supplied continuously and the oxygen containing gas is pulsed.
Abstract:
A method for patterning a material layer on a substrate includes forming a hard mask layer on a material layer disposed on a substrate, and etching the material layer through the hard mask layer by simultaneously supplying an etching gas mixture and an oxygen containing gas. The etching gas mixture is supplied continuously and the oxygen containing gas is pulsed.
Abstract:
A method of etching a hardmask layer formed on a substrate is provided. The method includes supplying an etching gas mixture to a processing region of a processing chamber. A device substrate is disposed in the processing region when the etching gas mixture is supplied to the processing region. The device substrate comprises a substrate and a hardmask layer formed over the substrate. The etching gas mixture comprises a fluorine-containing gas, a silicon-containing gas, and an oxygen-containing gas. The method further includes providing RF power to the etching gas mixture to form a plasma in the processing region. The plasma is configured to etch exposed portions of the hardmask layer.
Abstract:
A method for etching a hardmask layer includes forming a photoresist layer comprising an organometallic material on a hardmask layer comprising a metal-containing material, exposing the photoresist layer to ultraviolet radiation through a mask having a selected pattern, removing un-irradiated areas of the photoresist layer to pattern the photoresist layer, forming a passivation layer comprising a carbon-containing material selectively on a top surface of the patterned photoresist layer, and etching the hardmask layer exposed by the patterned photoresist layer having the passivation layer formed thereon.
Abstract:
A method for patterning a material layer on a substrate includes forming a hard mask layer on a material layer disposed on a substrate, the material layer comprising a plurality of first layers and a plurality of second layers alternately formed over the substrate, performing a first etch process to form features in the material layer through the hard mask layer by supplying a first etching gas, and performing a second etch process to smooth sidewalls of the features formed in the material layer by suppling a second etching gas. The first etching gas is supplied continuously and the second etching gas is pulsed.
Abstract:
Disclosed herein is a method for forming metal-oxides in the photoresist to improve profile control. The method includes infiltrating a metal oxide in a photoresist layer by pressurizing a methyl-containing material in a processing environment proximate a film stack. The film stack includes the photoresist layer, the photoresist layer being disposed on top of and in contact with an underlayer. The underlayer disposed on top of a substrate. The method includes etching the film stack including the photoresist layer implanted with the metal oxide.
Abstract:
A method for etching a hardmask layer includes forming a photoresist layer comprising an organometallic material on a hardmask layer comprising a metal-containing material, exposing the photoresist layer to ultraviolet radiation through a mask having a selected pattern, removing un-irradiated areas of the photoresist layer to pattern the photoresist layer, forming a passivation layer comprising a carbon-containing material selectively on a top surface of the patterned photoresist layer, and etching the hardmask layer exposed by the patterned photoresist layer having the passivation layer formed thereon.
Abstract:
Embodiments of methods and an apparatus for utilizing a directed self-assembly (DSA) process on block copolymers (BCPs) to form a defect-free photoresist layer for feature transfer onto a substrate are provided. In one embodiment, a method for performing a dry development process includes transferring a substrate having a layer of block copolymers disposed thereon into an etching processing chamber, wherein at least a first type and a second type of polymers comprising the block copolymers are aggregated into a first group of regions and a second group of regions on the substrate, supplying an etching gas mixture including at least a carbon containing gas into the etching processing chamber, and predominately etching the second type of the polymers disposed on the second groups of regions on the substrate in the presence of the etching gas mixture.