Abstract:
An electronic device may have a display with touch sensors. One or more shielding layers may be interposed between the display and the touch sensors. The shielding layers may include shielding structures such as a conductive mesh structure and/or a transparent conductive film. The shielding structures may be actively driven or passively biased. In the active driving scheme, one or more inverting circuits may receive a noise signal from a cathode layer in the display and/or from the shielding structures, invert the received noise signal, and drive the inverted noise signal back onto the shielding structures to prevent any noise from the display from negatively impacting the performance of the touch sensors. In the passive biasing scheme, the shielding structures may be biased to a power supply voltage.
Abstract:
An electronic device may have a display with touch sensors. One or more shielding layers may be interposed between the display and the touch sensors. The shielding layers may include shielding structures such as a conductive mesh structure and/or a transparent conductive film. The shielding structures may be actively driven or passively biased. In the active driving scheme, one or more inverting circuits may receive a noise signal from a cathode layer in the display and/or from the shielding structures, invert the received noise signal, and drive the inverted noise signal back onto the shielding structures to prevent any noise from the display from negatively impacting the performance of the touch sensors. In the passive biasing scheme, the shielding structures may be biased to a power supply voltage.
Abstract:
The disclosure is related to head-to-head (H2H) gate on arrays (GOA) for pixel-based displays that may have reduced dimensions. In the described embodiments, the H2H design with alternate logic may be used to drive groups of pixels (e.g., a pixel row or column) with a primary and a secondary driver, located in opposite ends of the bezel of the electronic device. In the alternate-logic design, a shared shift-register may be used to enable two rows or columns. Embodiments in which more than two rows or columns are controlled by a single shift register are also described.
Abstract:
A display may have an array of pixels controlled by display driver circuitry. Gate driver circuitry supplies gate line signals to rows of the pixels. The gate driver circuitry may include blocks of gate driver circuits each having an output coupled to a respective one of the gate lines. The gate driver circuits of each block are coupled in a chain to form a shift register. Each block has a local block-level gate start pulse generator. The display driver circuitry has a display driver circuit that supplies a gate start pulse clock to each of the local block-level gate start pulse generators. The local block-level gate start pulse generators create gate start pulses that are applied to the first gate driver circuit in each shift register. The display driver circuit may delay the gate start pulse clock when it is desired to implement an intraframe pause.
Abstract:
This disclosure provides various techniques for providing fine-grain digital and analog pixel compensation to account for voltage error across an electronic display. By employing a two-dimensional digital compensation and a local analog compensation, a fine-grain and robust pixel compensation scheme may be provided to the electronic display.
Abstract:
A touch sensor panel comprising a first touch node electrode of a plurality of touch node electrodes, the first touch node electrode coupled to a first sense connection comprising a first set of traces, the first sense connection configured to have a first resistance per unit length that varies along a length of the first sense connection, and a second touch node electrode of the plurality of touch node electrodes, the second touch node electrode coupled to a second sense connection comprising a second set of traces, the second sense connection configured to have a second resistance per unit length that varies along a length of the second sense connection differently than the first resistance per unit length varies along the length of the first sense connection. An effective resistance of the first sense connection and the second sense connection are equal.
Abstract:
A display is provided that includes an array of display pixels and gate driver circuitry for providing data and gate line signals to the display pixels. Gate driver circuitry may include gate driver circuits that generate the gate line signals. A gate driver circuit may include at least a buffer transistor, a bootstrapping capacitor coupled to the buffer transistor, a pulldown transistor coupled in series with the buffer transistor, and an isolation transistor coupled to the gate of the pulldown transistor. The buffer transistor may directly receive a first clock signal, whereas the isolation transistor may directly receive a second clock signal that is complementary to the first clock signal. The pulldown transistor is substantially larger than the buffer transistor. The buffer transistor is substantially larger than the isolation transistor. Configured as such, clock loading is minimized while the pulldown transistor is sized to provide the desired fall time performance.
Abstract:
A display is provided that includes an array of display pixels and gate driver circuitry for providing data and gate line signals to the display pixels. Gate driver circuitry may include gate driver circuits that generate the gate line signals. A gate driver circuit may include at least a buffer transistor, a bootstrapping capacitor coupled to the buffer transistor, a pulldown transistor coupled in series with the buffer transistor, and an isolation transistor coupled to the gate of the pulldown transistor. The buffer transistor may directly receive a first clock signal, whereas the isolation transistor may directly receive a second clock signal that is complementary to the first clock signal. The pulldown transistor is substantially larger than the buffer transistor. The buffer transistor is substantially larger than the isolation transistor. Configured as such, clock loading is minimized while the pulldown transistor is sized to provide the desired fall time performance.
Abstract:
A display may have an array of pixels controlled by display driver circuitry. Gate driver circuitry supplies gate line signals to rows of the pixels. The gate driver circuitry may include blocks of gate driver circuits each having an output coupled to a respective one of the gate lines. The gate driver circuits of each block are coupled in a chain to form a shift register. Each block has a local block-level gate start pulse generator. The display driver circuitry has a display driver circuit that supplies a gate start pulse clock to each of the local block-level gate start pulse generators. The local block-level gate start pulse generators create gate start pulses that are applied to the first gate driver circuit in each shift register. The display driver circuit may delay the gate start pulse clock when it is desired to implement an intraframe pause.
Abstract:
A display may include an array of pixels. Each pixel in the array includes an organic light-emitting diode coupled to associated thin-film transistors. The diode may be coupled to drive transistor circuitry, a data loading transistor, and emission transistors. The drive transistor circuitry may include at least two transistor portions connected in series. The data loading transistor has a drain region connected to a data line and a source region connected directly to the drive transistor circuitry. The data line may be connected to and overlap the drain region of the data loading transistor. The data line and the source region of the data loading transistor are non-overlapping to reduce row-to-row crosstalk.