Abstract:
A method and apparatus to alter acoustic noise induced by processor performance changes is disclosed. In one embodiment, a processor having one or more processor cores may execute instructions of one or more applications. The performance level (e.g., supply voltage and/or clock frequency) may be adjusted in accordance with workload demands. One or more of the applications executing on a core of the processor may exhibit periodic behavior, thereby causing periodic changes (e.g., increases) in the performance level. Performance monitoring may be conducted and may detect the periodic changes in the workload of the application. Responsive to the detection of the periodic changes, a power management unit may subsequently cause future performance level changes associated with the application to occur aperiodically.
Abstract:
A speaker assembly including a first speaker comprising a first diaphragm and a first voice coil movably coupled to a first magnet assembly, wherein the first diaphragm faces a first direction, the first voice coil moves along a first axis in the first direction when driven by an audio signal and the first magnet assembly is coupled to a fixed structure by a first compliant mounting member; and a second speaker laterally offset from the first speaker and including a second diaphragm and a second voice coil movably coupled to a second magnet assembly, wherein the second diaphragm faces a second direction different from the first direction, the second voice coil moves along a second axis in the second direction when driven by an audio signal and the second magnet assembly is coupled to the fixed structure by a second compliant mounting member.
Abstract:
A printed circuit board (PCB) assembly having several electronic components mounted on a PCB and a damping layer covering the electronic components, is disclosed. Embodiments of the PCB assembly include an overmold layer constraining the damping layer against the PCB. Embodiments of the PCB assembly include an interposer between a capacitor of the electronic components and the PCB. Other embodiments are also described and claimed.
Abstract:
An electronic device may have a source of magnetic field such as a magnet that produces a static magnetic field. A flexible printed circuit may have a flexible tail that surrounds a central portion. The central portion may overlap the magnet. Electrical components may be mounted to the central portion. To prevent undesired vibrations and noise due to interactions between magnetic fields induced by signals flowing in signal lines in the flexible printed circuit and the static magnetic field, the signal lines may be vertically stacked or may be routed along a curved path that does not overlap the magnet. The tail may serve as a service loop that allows a portion of a housing for the device and electrical components mounted to the central portion in alignment with windows in the housing to be detached for servicing.
Abstract:
An electronic device may be provided with integrated circuits and electrical components such as capacitors that are soldered to printed circuit boards. Liquid polymer adhesive such as encapsulant and underfill materials may be deposited on the printed circuit. Electrical components such as capacitors may be coated with the encapsulant. The underfill may be deposited adjacent to an integrated circuit, so that the underfill wicks into a gap between the integrated circuit and the printed circuit board. The encapsulant may be more viscous than the underfill and may therefore prevent the flowing underfill from reaching the electrical components. Some of the encapsulant may be located between the electrical components and the printed circuit board. The encapsulant can be cured to form an elastomeric material covering the electrical components that helps damp vibrations. The elastomeric material may be less stiff than the underfill.
Abstract:
An electronic device may have a source of magnetic field such as a magnet that produces a static magnetic field. A flexible printed circuit may have a flexible tail that surrounds a central portion. The central portion may overlap the magnet. Electrical components may be mounted to the central portion. To prevent undesired vibrations and noise due to interactions between magnetic fields induced by signals flowing in signal lines in the flexible printed circuit and the static magnetic field, the signal lines may be vertically stacked or may be routed along a curved path that does not overlap the magnet. The tail may serve as a service loop that allows a portion of a housing for the device and electrical components mounted to the central portion in alignment with windows in the housing to be detached for servicing.
Abstract:
A wireless electronic device may be provided with components such as electrical and structural components. During transmission of radio-frequency signals, antennas and wireless communications circuitry of the wireless electronic device may produce associated time-varying magnetic fields. One or more components may be covered with magnetic-resistant shield structures that protect the components from the time-varying magnetic fields by preventing magnetic-induced vibrations. The magnetic-resistant shield structures may include a conductive base layer such a layer of brass. A magnetic-resistant layer may be plated onto the conductive base layer. The magnetic-resistant layer may be formed from an amorphous nickel-phosphorous alloy. The amorphous nickel-phosphorous alloy may be produced by controlling the manufacturing temperature and proportion of phosphorous in the alloy while performing the plating operations within a length of time that ensures non-equilibrium conditions during the plating operations.
Abstract:
An electronic device may have a source of magnetic field such as a magnet that produces a static magnetic field. A flexible printed circuit may have a flexible tail that surrounds a central portion. The central portion may overlap the magnet. Electrical components may be mounted to the central portion. To prevent undesired vibrations and noise due to interactions between magnetic fields induced by signals flowing in signal lines in the flexible printed circuit and the static magnetic field, the signal lines may be vertically stacked or may be routed along a curved path that does not overlap the magnet. The tail may serve as a service loop that allows a portion of a housing for the device and electrical components mounted to the central portion in alignment with windows in the housing to be detached for servicing.
Abstract:
A method and apparatus to alter acoustic noise induced by processor performance changes is disclosed. In one embodiment, a processor having one or more processor cores may execute instructions of one or more applications. The performance level (e.g., supply voltage and/or clock frequency) may be adjusted in accordance with workload demands. One or more of the applications executing on a core of the processor may exhibit periodic behavior, thereby causing periodic changes (e.g., increases) in the performance level. Performance monitoring may be conducted and may detect the periodic changes in the workload of the application. Responsive to the detection of the periodic changes, a power management unit may subsequently cause future performance level changes associated with the application to occur aperiodically.
Abstract:
Systems of the present disclosure include an electronic device with a chassis and a speaker assembly. The speaker assembly can include a speaker support surrounding a speaker and coupled to the chassis via a spring element. The spring element can be monolithically formed with a main body of the speaker support and be configured to reduce transmission of vibrations from the speaker to the chassis. For example, the spring element can include an arm that extends within an opening of the main body to connect the main body to a fastener secured to the chassis. The spring element can be provided with features that facilitate wide distribution of loads and relative movement between the speaker assembly and the chassis.