摘要:
In situations where the demand for syngas is intermittent, a fuel processor is operated to provide a high absolute hydrogen and carbon monoxide production, rather than to give a high fuel-specific hydrogen and carbon monoxide production. When a syngas generator is operated to intermittently produce syngas, a heating process can be performed between periods of syngas demand in order to keep the fuel processor within a desired temperature range. The heating process can comprise various steps or events including performing a heating event, allowing a standby period, and/or performing a carbon conversion event. Carbon formed during the process of converting fuel to syngas can be advantageously converted to maintain the temperature of the fuel processor within a desired range in between periods of syngas demand. A predictive method can be employed to control at least a portion of the heating process.
摘要:
An inventive adsorptive gas separation process is provided capable of producing a purified methane product gas as a light non-adsorbed product gas as opposed to a heavy desorbed exhaust gas component, from a feed gas mixture comprising at least methane, and carbon dioxide. In an embodiment of the invention, the feed gas mixture may comprise at least about 10% carbon dioxide, and the purified methane product gas may be desirably purified to contain less than about 5000 ppm carbon dioxide. In another embodiment of the invention, the feed gas mixture may comprise at least about 50% carbon dioxide, and the purified methane product gas may be desirably purified to contain less than about 5000 ppm carbon dioxide.
摘要:
An inventive adsorptive gas separation process is provided capable of producing a purified methane product gas as a light non-adsorbed product gas as opposed to a heavy desorbed exhaust gas component, from a feed gas mixture comprising at least methane, and carbon dioxide. In an embodiment of the invention, the feed gas mixture may comprise at least about 10% carbon dioxide, and the purified methane product gas may be desirably purified to contain less than about 5000 ppm carbon dioxide. In another embodiment of the invention, the feed gas mixture may comprise at least about 50% carbon dioxide, and the purified methane product gas may be desirably purified to contain less than about 5000 ppm carbon dioxide.
摘要:
An integrated fuel combustion system with adsorptive gas separation separates a portion of carbon dioxide from a combustion gas mixture and provides for recycle of separated carbon dioxide to the intake of the fuel combustor for combustion. A process for carbon dioxide separation and recycle includes: admitting combustion gas to an adsorptive gas separation system contactor containing adsorbent material; adsorbing a portion of carbon dioxide; recovering a first product gas depleted in carbon dioxide for release or use; desorbing carbon dioxide from the adsorbent material and recovering a desorbed second product gas enriched in carbon dioxide for sequestration or use; admitting a conditioning fluid into the contactor and desorbing a second portion of carbon dioxide to recover a carbon dioxide enriched conditioning stream; and recycling a portion of the carbon dioxide enriched conditioning stream to an inlet of fuel combustor to pass through the fuel combustor for combustion.
摘要:
A method of temperature swing adsorption allows separation of a first fluid component from a fluid mixture comprising at least the first fluid component in an adsorptive separation system having a parallel passage adsorbent contactor with parallel flow passages having cell walls which include an adsorbent material and axial thermally conductive filaments in direct contact with the adsorbent material. The method provides for transferring heat from the heat of adsorption in a countercurrent direction along at least a portion of the filaments during adsorption and transferring heat in either axial direction along the filaments to provide at least a portion of the heat of desorption during a desorption step. A carbon dioxide TSA separation process to separate carbon dioxide from flue gas also includes steps transferring heat from adsorption or for desorption along axial thermally conductive filaments.
摘要:
A fuel processor for producing a hydrogen-containing product stream from a fuel stream and an oxidant stream, comprises a mixing tube from which the combined fuel and oxidant stream is directed substantially axially into a reaction chamber. The reaction chamber comprises a turn-around chamber and a turn-around wall at one end for re-directing the combined reactant stream, so that in the turn-around chamber the re-directed stream surrounds and is in contact with the combined reactant stream flowing substantially axially in the opposite direction. This design and opposing flow configuration creates a low velocity zone which stabilizes the location of a flame in the fuel processor and offers other advantages.
摘要:
In situations where the demand for syngas is intermittent, a fuel processor is operated to provide a high absolute hydrogen and carbon monoxide production, rather than to give a high fuel-specific hydrogen and carbon monoxide production. When a syngas generator is operated to intermittently produce syngas, a heating process can be performed between periods of syngas demand in order to keep the fuel processor within a desired temperature range. The heating process can comprise various steps or events including performing a heating event, allowing a standby period, and/or performing a carbon conversion event. Carbon formed during the process of converting fuel to syngas can be advantageously converted to maintain the temperature of the fuel processor within a desired range in between periods of syngas demand. A predictive method can be employed to control at least a portion of the heating process.
摘要:
A fuel processor for producing a hydrogen-containing product stream from a fuel stream and an oxidant stream, comprises a mixing tube from which the combined fuel and oxidant stream is directed substantially axially into a reaction chamber. The reaction chamber comprises a turn-around chamber and a turn-around wall at one end for re-directing the combined reactant stream, so that in the turn-around chamber the re-directed stream surrounds and is in contact with the combined reactant stream flowing substantially axially in the opposite direction. This design and opposing flow configuration creates a low velocity zone which stabilizes the location of a flame in the fuel processor and offers other advantages.
摘要:
A parallel passage fluid contactor structure for chemical reaction processes has one or more segments, where each segment has a plurality of substantially parallel fluid flow passages oriented in an axial direction; cell walls between each adjacent fluid flow passages and each cell wall has at least two opposite cell wall surfaces. The structure also includes at least one active compound in the cell walls and multiple axially continuous conductive filaments either embedded within the cell walls or situated between the cell wall surfaces. The conductive filaments are at least one of thermally and electrically conductive, are oriented in axially, and are in direct contact with the active compound, and are operable to transfer thermal energy between the active material and the conductive filaments. Heating of the conductive filaments may be used to transfer heat to the active material in the cell walls. Methods of manufacturing the structure are discussed.
摘要:
An integrated fuel combustion system with adsorptive gas separation separates a portion of carbon dioxide from a combustion gas mixture and provides for recycle of separated carbon dioxide to the intake of the fuel combustor for combustion. A process for carbon dioxide separation and recycle includes: admitting combustion gas to an adsorptive gas separation system contactor containing adsorbent material; adsorbing a portion of carbon dioxide; recovering a first product gas depleted in carbon dioxide for release or use; desorbing carbon dioxide from the adsorbent material and recovering a desorbed second product gas enriched in carbon dioxide for sequestration or use; admitting a conditioning fluid into the contactor and desorbing a second portion of carbon dioxide to recover a carbon dioxide enriched conditioning stream; and recycling a portion of the carbon dioxide enriched conditioning stream to an inlet of fuel combustor to pass through the fuel combustor for combustion.