Abstract:
A technique is provided which, in an exhaust gas recirculation apparatus for an internal combustion engine, can calculate a low-pressure EGR rate and a high-pressure EGR rate in an accurate manner, and control the flow rates of both a low pressure EGR passage and a high pressure EGR passage in a closed-loop control manner, thereby to make the temperature of intake air and a supercharging pressure stable and to suppress the deterioration of exhaust emissions as well as the deterioration of power performance. The low pressure EGR rate, representative of the proportion of an amount of low pressure EGR gas to an amount of intake air sucked into the internal combustion engine, and the high pressure EGR rate, representative of the proportion of an amount of high pressure EGR gas to the amount of intake air, are calculated by using a CO2 concentration in an intake passage at a location downstream of a connection portion of the low pressure EGR passage and upstream of a connection portion of the high pressure EGR passage, a CO2 concentration in the intake passage at a location downstream the connection portion of the high pressure EGR passage, and a CO2 concentration of an exhaust gas discharged from the internal combustion engine (S103). The low pressure EGR rate and the high pressure EGR rate to be calculated are controlled to individual target values, respectively (S104).
Abstract:
In one embodiment, a total pilot injection amount is calculated from the difference between a compressed gas temperature in a cylinder and a fuel self-ignition temperature. As pilot injection, a plurality of instances of divided pilot injection are performed, and by setting the injection amount per one instance of divided pilot injection to an injector minimum limit injection amount, each divided pilot injection amount is suppressed, and the penetration of fuel is suppressed to a low level so that attachment of fuel to a wall face is avoided, and also, fuel is caused to accumulate in the center portion of the cylinder.
Abstract:
In one embodiment, a determination is made of whether or not in a condition in which a compressed gas temperature will reach a fuel self-ignition temperature by only a compression operation in the compression stroke, and in a case where the compressed gas temperature will reach the fuel self-ignition temperature, pilot injection is judged to be unnecessary, so this pilot injection is prohibited.
Abstract:
In one embodiment, a total fuel injection amount is calculated from a torque required by an engine. A division ratio of a pre-injection amount that achieves both suppression of ignition delay of fuel from a main injection and suppression of a peak value of a heat production ratio of combustion from the main injection is calculated. Upper and lower limit guards are given to the obtained divided amount, and the divided injection amount is calculated. The injection amount of the main injection is obtained by subtracting the divided injection amount from the total fuel injection amount.
Abstract:
In one embodiment, a determination is made of whether or not in a condition in which a compressed gas temperature will reach a fuel self-ignition temperature by only a compression operation in the compression stroke, and in a case where the compressed gas temperature will reach the fuel self-ignition temperature, pilot injection is judged to be unnecessary, so this pilot injection is prohibited.
Abstract:
The invention provides a fuel injection control device for an internal combustion engine that can improve the accuracy of combustion control regarding smoke suppression. The fuel injection control device is applied to an engine provided with an EGR device for returning, as a part of an intake gas flown into the cylinder, an EGR gas, withdrawn from an exhaust passage, to an air intake passage. The amount of oxygen OXM contained in the intake gas and the concentration of oxygen OXC contained in the intake gas are detected (steps S1 and S2). The smoke tolerable limit value QOXMLMT as the upper limit of the amount of fuel injection, which can suppress the amount of smoke generated in the engine to a predetermined tolerance range, is set based on the detected amount of oxygen and concentration of oxygen (step S4), and, when the required amount of injection QDMD determined based on operation conditions is larger than the tolerable limit value QOXMLMT, the instructional injection amount QFIN is limited to the tolerable limit value QOXMLMT.
Abstract:
An EGR-gas flow rate estimation apparatus for an engine including an exhaust circulation pipe connected between an exhaust passage and an intake passage of the engine, and an EGR control valve interposed in the exhaust circulation pipe and having a throttle portion. The apparatus estimates a provisional EGR gas flow rate Gegr0 by use of a general formula Gegr0=Aegr·(2·Pex·ρa)1/2·Φ (Φ=(((κ/(κ−1)·((Pb/Pex)2/κ−(Pb/Pex)(1+1/κ)))1/2) where Pup represents the exhaust pressure, Pb represents the intake pressure, Aegr represents the effective opening area of the throttle portion, ρa represents the density of EGR gas, and κ represents the specific heat ratio of EGR gas. Subsequently, the apparatus estimates the flow rate Gegr of EGR gas flowing into the intake passage, by multiplying the provisional EGR gas flow rate Gegr0 by a correction value dPgain corresponding to differential pressure (Pex−Pb).
Abstract:
An engine is provided with a dual cooling system having a head-side cooling water passage formed in a cylinder head, through which a cooling water can be circulated, and a block-side cooling water passage formed in a cylinder block, through which a cooling water can be circulated, in which a block-side circulation can be stopped without stopping a head-side circulation. An exhaust gas recirculation control device for such engine comprises a temperature sensor for detecting a temperature of the cooling water circulating the head-side passage (THW); and an exhaust gas recirculation (EGR) system for supplying an EGR gas to the engine. The EGR system performs the supply of the EGR gas when the cooling water temperature (THW) is higher than a predetermined temperature (THE), and stops the supply of the EGR gas when the cooling water temperature (THW) is lower than the predetermined temperature (THE). The predetermined temperature when the block-side circulation is stopped (THL) is set to be different from the predetermined temperature when the block-side circulation is performed (THH).
Abstract:
In an exhaust gas sensor control system and control method, the exhaust pipe wall temperature is estimated based on the measured exhaust gas temperature measured, the exhaust gas flow rate, and the measured outside air temperature, with reference to a supplied heat quantity calculation map, wall temperature added value map, and a wall temperature subtracted value map. Then the dew-point of the exhaust pipe is calculated based on the air-fuel ratio of the air flow amount to the weight of fuel, and a condensed water added amount is calculated based on the relative wall temperature and the exhaust gas flow amount. The amount of condensed water is then estimated by summing the calculated condensed water added amounts.
Abstract:
An exhaust gas control system for an internal combustion engine includes a turbocharger that includes a compressor arranged in an intake passage, and a turbine arranged in an exhaust passage; a low-pressure EGR unit that recirculates a portion of exhaust gas back to the internal combustion engine through a low-pressure EGR passage that provides communication between the exhaust passage, at a portion downstream of the turbine, and the intake passage, at a portion upstream of the compressor; a low-pressure EGR valve that is provided in the low-pressure EGR passage, and that changes the flow passage area of the low-pressure EGR passage; and a valve control unit that executes an opening/closing control over the low-pressure EGR valve. When it is determined that the internal combustion engine is under a predetermined low-temperature environment, the low-pressure EGR valve is kept closed while the internal combustion engine is in the fuel-supply cutoff operation mode.