Abstract:
A miniaturized LED package substrate allowing for the better installation of an electrostatic protection device includes an upper substrate, a lower substrate, and a circuit layer. The circuit layer is positioned between the upper substrate and the lower substrate and electrically connected to the upper substrate and the lower substrate. At least one cavity is defined at the lower substrate, and each of the at least one cavity passes through the lower substrate to expose a portion of the circuit layer.
Abstract:
The present disclosure provides a light emitting diode die which includes a substrate; an N type semiconductor layer, an active layer, and a P type semiconductor layer formed on the substrate in sequence; at least one recess, and a pair of electrodes. The recess extends to the N type semiconductor layer. The insulating layer covers the all of side surfaces of the N type semiconductor layer, the active layer, the P type semiconductor layer, and covers top of the P type semiconductor layer except an opening on the P semiconductor layer. One of the electrodes is filled in the recess and electrically connected to the N type semiconductor layer, and the other one of the electrodes is connected to the P type semiconductor layer in the opening. The present disclosure further provides an LED package having the LED die and a method for manufacturing the same.
Abstract:
An exemplary light emitting diode (LED) package includes a substrate, a first electrode penetrating downward through the substrate, a second electrode penetrating downward through the substrate and spaced from the first electrode, an LED die arranged on the substrate and mounted to the first and second electrodes by flip-chip technology, and an encapsulation layer formed on the substrate to encapsulate the LED die therein. The substrate includes a top surface and a bottom surface at opposite sides thereof. Top ends of the first and second electrodes are exposed at the top surface of the substrate, and bottom ends of the first and second electrodes are exposed at the bottom surface of the substrate. A moisture barrier layer is attached on the bottom of the LED package to cover a joint of the first and/or second electrode and the substrate.
Abstract:
An exemplary light-emitting diode (LED) package includes an electrically insulating substrate, an electrode structure embedded in the insulating substrate, and a plurality of LED chips electrically connecting with electrodes of the electrode structure respectively. The electrode structure includes a first electrode, a second electrode and a third electrode located between the first and second electrodes. Top surfaces of the first, second and third electrodes are exposed out of a top surface of the insulating substrate to support the LED chips. Front side and rear side faces of the first and second electrodes are exposed out of a front side face and a rear side face of the substrate whereby the front or rear side faces of the first and second electrodes can connect with welding pads of a printed circuit board. Circumferential side faces of the third electrode are encapsulated in the substrate.
Abstract:
A backlight module includes a substrate, a plurality of LED packages mounted on the substrate and a light diffusion board located above the LED packages. The light diffusion board includes a light incident surface facing toward the LED packages and a light output surface. A plurality of light-guiding portions is configured extending from the incident surface of the light diffusion board toward the LED package. Each light-guiding portion comprises a concave surface at an outer periphery thereof. A diameter of each light-guiding portion decreases gradually from light diffusion board toward the LED packages. The concave surface of each light-guiding portion is recessed inwardly from the outer periphery of the light-guiding portion. Light from the LED packages and emitting into the light-guiding potions is divergently and uniformly adjusted into the light diffusion board by the concave surfaces of the light-guiding portions.
Abstract:
An LED package includes a first electrode, a second electrode, a reflecting cup connecting the first electrode and the second electrode, and an LED chip. The first electrode includes a first main portion and a first connecting portion extending outwardly from the first main portion. The first connecting portion has a first connecting face away from the first main portion. The second electrode includes a second main portion and a second connecting portion extending outwardly from the second main portion. The second connecting portion has a second connecting face away from the second main portion. The first main portion and the second main portion are embedded into the receiving cup, and the first connecting face of the first connecting portion and the second connecting face of the second connecting portion are exposed outside the receiving cup.
Abstract:
An LED includes a base, a pair of leads fixed on the base, a housing fixed on the leads, a chip mounted on one lead and an encapsulant sealing the chip. The housing defines a cavity in a central area thereof and a chamber adjacent to a circumferential periphery thereof. Top faces of the leads are exposed in the chamber. A blocking wall is formed in the chamber to contact the exposed top faces of the leads. A bonding force between the blocking wall and the leads is larger than that between the leads and the housing.
Abstract:
A narrower LED package structure with sideways output of light suitable for a light guide plate includes two first electrodes, a package body, a cover layer, and two second electrodes. The LED chip is mounted on the first electrodes. The package body encapsulates the first electrodes, and surrounds the LED chip to define a light emitting region. The cover layer infills the light emitting region and covers the LED chip. The second electrodes are positioned outside the package body. Along a plane parallel to the first electrodes, a surface area of the two second electrodes is greater than a surface area of the portion of the two first electrodes positioned in the light emitting region.
Abstract:
A method for manufacturing a light emitting diode (LED) die includes providing an LED die including a substrate, an N type semiconductor layer, an active layer, and a P type semiconductor layer grown on the substrate in sequence. The N type semiconductor layer, the active layer, and the P type semiconductor layer are etched to define a plurality of recesses and a groove. An insulating layer to cover side surfaces of the recesses and the P type semiconductor layer is formed and a portion of the insulating layer is etched to define an opening to expose a top portion of the P type semiconductor layer. A pair of electrodes is formed and the LED die is cut along the groove to obtain an individual LED die.
Abstract:
A photoelectric device includes an electrode structure, an LED (light emitting diode) element, a zener diode and a reflective cup. The LED element, the zener diode and the reflective cup are arranged on the electrode structure. The LED element and the zener diode are electrically connected in anti-parallel with each other. The reflective cup comprises an inner surface defined thereof and a nick defined in an outside of the reflective cup. The LED element is surrounded by the inner surface of the reflective cup and the zener diode is arranged in the nick.