Abstract:
The present invention generally relates to an offset electrode TFT and a method of its manufacture. The offset electrode TFT is a TFT in which one electrode, either the source or the drain, surrounds the other electrode. The gate electrode continues to be below both the source and the drain electrodes. By redesigning the TFT, less voltage is necessary to transfer the voltage from the source to the drain electrode as compared to traditional bottom gate TFTs or top gate TFTs. The offset electrode TFT structure is applicable not only to silicon based TFTs, but also to transparent TFTs that include metal oxides such as zinc oxide or IGZO and metal oxynitrides such as ZnON.
Abstract:
The present invention generally relates to a method of manufacturing a TFT. The TFT has an active channel that comprises IGZO or zinc oxide. After the source and drain electrodes are formed, but before the passivation layers or etch stop layers are deposited thereover, the active channel is exposed to an N2O or O2 plasma. The interface between the active channel and the passivation layers or etch stop layers are either altered or damaged during formation of the source and drain electrodes. The N2O or O2 plasma alters and repairs the interface between the active channel and the passivation or etch stop layers.
Abstract:
The present invention generally relates to an amorphous semiconductor material and TFTs containing the material. The semiconductor material contains a single cation, such as zinc, and multiple anions. For the multiple anions, only one of the anions can be oxygen or nitrogen. The anions compete with each other to twist the resulting structure. For example, if one of the anions bonded with the cation would result in a cubic structure, and another of the anions bonded with the cation would result in a hexagonal structure, the competing anions would twist the resulting structure so that the structure remains amorphous rather than crystalline. Further, because a single cation is utilized, there is no grain boundary and thus, the material has a high mobility.
Abstract:
Embodiments disclosed herein generally relate to thin film transistors with one or more trenches to control the threshold voltage and off-current and methods of making the same. In one embodiment, a semiconductor device can include a substrate comprising a surface with a thin film transistor formed thereon, a first passivation layer formed over the thin film transistor, a trench formed within the first passivation layer and a second passivation layer formed over the first passivation layer and within the trench.
Abstract:
The present invention generally relates to a thin film semiconductor device having a buffer layer formed between the semiconductor layer and one or more layers. In one embodiment, a thin film semiconductor device includes a semiconductor layer having a first work function and a first electron affinity level, a buffer layer having a second work function greater than the first work function and a second electron affinity level that is less than the first electron affinity level; and a gate dielectric layer having a third work function less than the second work function and a third electron affinity level that is greater than the second electron affinity level.
Abstract:
The present invention generally comprises a semiconductor film and the reactive sputtering process used to deposit the semiconductor film. The sputtering target may comprise pure zinc (i.e., 99.995 atomic percent or greater), which may be doped with aluminum (about 1 atomic percent to about 20 atomic percent) or other doping metals. The zinc target may be reactively sputtered by introducing nitrogen and oxygen to the chamber. The amount of nitrogen may be significantly greater than the amount of oxygen and argon gas. The amount of oxygen may be based upon a turning point of the film structure, the film transmittance, a DC voltage change, or the film conductivity based upon measurements obtained from deposition without the nitrogen containing gas. The reactive sputtering may occur at temperatures from about room temperature up to several hundred degrees Celsius. After deposition, the semiconductor film may be annealed to further improve the film mobility.