Abstract:
A white conductive fiber is manufactured at an inexpensive cost having superior conductivity and high degree of whiteness, in which a metal coating plated on the fiber has superior adhesiveness. A method for manufacturing the white conductive fiber comprises the steps of mounting a wound fiber body formed by winding a continuous fiber to the fixing shaft, a step of flowing a plating solution from the fixing shaft to a plating bath via the wound fiber body so as to infiltrate the plating solution into the wound fiber body, and a step of performing electroless plating of silver, platinum, or the like on the fiber material while the plating solution flows.
Abstract:
An object is to provide the formulation of a copper particulate dispersion in which copper particulates are dispersed.The copper particulate dispersion includes copper particulates, at least one kind of a dispersion vehicle containing the copper particulates, and at least one kind of dispersant which allows the copper particulates to disperse in the dispersion vehicle. The copper particulates have a center particle diameter of 1 nm or more and less than 100 nm. The dispersion vehicle is a polar dispersion vehicle. The dispersant is a compound having at least one acidic functional group, which has a molecular weight of 200 or more and 100,000 or less, or a salt thereof. Whereby, the dispersant has compatibility with dispersion vehicle and a surface of copper particulates is coated with dispersant molecules, and thus the copper particulates are dispersed in the dispersion vehicle.
Abstract:
An object is to provide a conductive film forming method which can form a conductive film having low electric resistance on a base material by utilizing photo sintering even when the base material has low heat resistance. A conductive film forming method is a method in which a conductive film is formed on a base material, and the method includes the steps of forming a film composed of copper particulates on a base material, subjecting the film to photo sintering, and applying plating to the photo-sintered film. Whereby, it is possible to form a conductive film on a base material by lowering irradiation energy of light in photo sintering even when the base material has low heat resistance. Since the conductive film includes a plated layer, electric resistance decreases.
Abstract:
An object is to provide a copper particulate dispersion which is suited to discharge in the form of droplets.The copper particulate dispersion includes copper particulates, at least one kind of a dispersion vehicle containing the copper particulates, and at least one kind of dispersant which allows the copper particulates to disperse in the dispersion vehicle. The copper particulates have a center particle diameter of 1 nm or more and less than 100 nm. The dispersion vehicle is a polar dispersion vehicle having a boiling point within a range from 150° C. to 250° C. Whereby, when the copper particulate dispersion is discharged in the form of droplets, clogging at the discharge portion caused by drying of the dispersion vehicle is prevented and the viscosity is low for its high boiling point, and thus the copper particulate dispersion is suited to discharge in the form of droplets.
Abstract:
There is disclosed a process for producing an insolubilized glucose isomerase useful for converting glucose into fructose comprising contacting a macroporous anion exchange resin with glucose isomerase to effect absorption of the isomerase on the resin, said resin having high porosity and high ion exchange capacity, whereby the resulted insolubilized glucose isomerase has high degree of adsorption, high activity retention and high activity yield.
Abstract:
The copper particulate dispersion includes copper particulates, at least one kind of a dispersion vehicle containing the copper particulates, and at least one kind of dispersant which allows the copper particulates to disperse in the dispersion vehicle. The copper particulates have a center particle diameter of 1 nm or more and less than 100 nm. The dispersion vehicle is a polar dispersion vehicle. The dispersant is a compound having at least one acidic functional group, which has a molecular weight of 200 or more and 100,000 or less, or a salt thereof. Whereby, the dispersant has compatibility with dispersion vehicle and a surface of copper particulates is coated with dispersant molecules, and thus the copper particulates are dispersed in the dispersion vehicle.
Abstract:
An object is to provide a copper particulate dispersion which is suited to discharge in the form of droplets.The copper particulate dispersion includes copper particulates, at least one kind of a dispersion vehicle containing the copper particulates, and at least one kind of dispersant which allows the copper particulates to disperse in the dispersion vehicle. The copper particulates have a center particle diameter of 1 nm or more and less than 100 nm. The dispersion vehicle is a polar dispersion vehicle having a boiling point within a range from 150° C. to 250° C. Whereby, when the copper particulate dispersion is discharged in the form of droplets, clogging at the discharge portion caused by drying of the dispersion vehicle is prevented and the viscosity is low for its high boiling point, and thus the copper particulate dispersion is suited to discharge in the form of droplets.