Fabrication of periodic surface structures with nanometer-scale spacings
    1.
    发明授权
    Fabrication of periodic surface structures with nanometer-scale spacings 失效
    具有纳米尺度间隔的周期性表面结构的制造

    公开(公告)号:US06329070B1

    公开(公告)日:2001-12-11

    申请号:US09730587

    申请日:2000-12-07

    Abstract: The periodic stress and strain fields produced by a pure twist grain boundary between two single crystals bonded together in the form of a bicrystal are used to fabricate a two-dimensional surface topography with controllable, nanometer-scale feature spacings (e.g., from 50 nanometers down to 1.5 nanometers). The spacing of the features is controlled by the misorientation angle used during crystal bonding. One of the crystals is selected to be thin, on the order of 5-100 nanometers. A buried periodic array of screw dislocations is formed at the twist grain boundary. To bring the buried periodicity to the surface, the thin single crystal is etched to reveal an array of raised elements, such as pyramids, that have nanometer-scale dimensions. The process can be employed with numerous materials, such as gold, silicon and sapphire. In addition, the process can be used with different materials for each crystal such that a periodic array of misfit dislocations is formed at the interface between the two crystals.

    Abstract translation: 以双晶形式结合在一起的两个单晶之间的纯扭结晶界所产生的周期性应力和应变场用于制造具有可控的纳米尺度特征间隔的二维表面形貌(例如,从50纳米下降 至1.5纳米)。 特征的间距由晶体接合期间使用的取向角控制。 其中一个晶体选择为薄,约5-100纳米。 在扭曲晶界处形成螺旋位错的埋置周期性阵列。 为了将掩埋的周期性带到表面,蚀刻薄的单晶以显示具有纳米级尺寸的凸起元件(例如金字塔)的阵列。 该方法可以与许多材料一起使用,例如金,硅和蓝宝石。 此外,该方法可以用于每种晶体的不同材料,使得在两个晶体之间的界面处形成周期性阵列的失配位错。

    Article comprising spinel-structure material on a substrate, and method
of making the article
    2.
    发明授权
    Article comprising spinel-structure material on a substrate, and method of making the article 失效
    在基材上包含尖晶石结构材料的制品以及制造该制品的方法

    公开(公告)号:US5728421A

    公开(公告)日:1998-03-17

    申请号:US697402

    申请日:1996-08-23

    CPC classification number: H01F41/20 H01F10/20 H01F10/265 H01F10/30

    Abstract: Ferrite films having excellent crystalline and magnetic properties are obtainable without high temperature (>500.degree. C.) processing if an appropriate template layer is deposited on a conventional substrate body (e.g., SrTiO.sub.3, cubic zirconia, Si), and the ferrite is deposited on the annealed template. The template is a spinel-structure metal oxide that has a lattice constant in the range 0.79-0.89 nm, preferably within about 0.015 nm of the lattice constant of the ferrite. Exemplarily, a NiFe.sub.2 O.sub.4 film was deposited at 400.degree. C. on a CoCr.sub.2 O.sub.4 template which had been deposited on (100) SrTiO.sub.3. The magnetization of the ferrite film at 4000 Oe was more than double the magnetization of a similarly deposited comparison ferrite film (NiFe.sub.2 O.sub.4 on SrTiO.sub.3), and was comparable to that of a NiFe.sub.2 O.sub.4 film on SrTiO.sub.3 that was annealed at 1000.degree. C. The ability to produce ferrite films of good magnetic properties without high temperature treatment inter alia makes possible fabrication of on-board magnetic components (e.g., inductor) on Si chips designed for operation at relatively high frequencies, e.g., >10 MHz, even at about 100 MHz.

    Abstract translation: 如果在常规基板主体(例如,SrTiO 3,立方氧化锆,Si)上沉积适当的模板层,则不需要高温(> 500℃)处理即可获得具有优异结晶和磁性能的铁氧体膜,铁素体沉积在 退火模板。 该模板是尖晶石结构金属氧化物,其晶格常数在铁素体的晶格常数的0.79-0.89nm范围内,优选在约0.015nm范围内。 示例性地,在400℃下沉积在(100)SrTiO 3上的CoCr 2 O 4模板上沉积NiFe 2 O 4膜。 铁氧体膜在4000Oe下的磁化强度是同样沉积的比较铁氧体膜(SrTiO3上的NiFe2O4)的磁化强度的两倍,并且与在1000℃退火的SrTiO 3上的NiFe 2 O 4膜的磁化相当。 生产具有良好磁性能的铁氧体膜,而不需要高温处理,特别是可以在设计用于在相对高的频率(例如> 10MHz)操作的Si芯片上制造车载磁性部件(例如,电感器),甚至在约100MHz。

Patent Agency Ranking