摘要:
Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.
摘要:
In a semiconductor light emitting device, a light emitting structure includes a first-conductivity type semiconductor layer, an active layer, and a second-conductivity type semiconductor layer, which are sequentially formed on a conductive substrate. A second-conductivity type electrode includes a conductive via and an electrical connection part. The conductive via passes through the first-conductivity type semiconductor layer and the active layer, and is connected to the inside of the second-conductivity type semiconductor layer. The electrical connection part extends from the conductive via and is exposed to the outside of the light emitting structure. An insulator electrically separates the second-conductivity type electrode from the conductive substrate, the first-conductivity type semiconductor layer, and the active layer. A passivation layer is formed to cover at least a side surface of the active layer in the light emitting structure. An uneven structure is formed on a path of light emitted from the active layer.
摘要:
An electrochemical cell assembly that is expected to prevent or at least minimize electrode contamination includes one or more getters that trap a component or components leached from a first electrode and prevents or at least minimizes them from contaminating a second electrode.
摘要:
Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.
摘要:
A wireless communication system for geographically controlling a communication area includes an access point for communicating with a terminal in a first area, and a jammer for generating noise for intercepting communication between the access point and a terminal in a second area. A jamming boundary for dividing an area in which the terminal can communicate with the access point and an area in which the terminal cannot communicate with the access point in an area in which the first area and the second area are overlapped is formed, and the jamming boundary is formed by a ratio between power of a signal transmitted to the terminal by the access point and power of a signal of the noise.
摘要:
There is provided a semiconductor light emitting device including a conductive substrate, a first electrode layer, an insulating layer, a second electrode layer, a second semiconductor layer, an active layer, and a first semiconductor layer that are sequentially stacked. The contact area between the first electrode layer and the first semiconductor layer is 3% to 13% of the total area of the semiconductor light emitting device, and thus high luminous efficiency is achieved.
摘要:
Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: wherein: i) A is a spacer having the structure O, S, SO2, —NH—, —N(CH2)n, wherein n=1-10, —(CH2)n—CH3—, wherein n=1-10, SO2-Ph, CO-Ph, wherein R5, R6, R7 and R8 each are independently —H, —NH2, F, Cl, Br, CN, or a C1-C6 alkyl group, or any combination of thereof; ii) R9, R10, R11, R12, or R13 each independently are —H, —CH3, —NH2, —NO, —CHnCH3 where n=1-6, HC═O—, NH2C═O—, —CHnCOOH where n=1-6, —(CH2)n—C(NH2)—COOH where n=1-6, —CH—(COOH)—CH2—COOH, —CH2—CH(O—CH2CH3)2, —(C═S)—NH2, —(C═NH)—N—(CH2)nCH3, where n=0-6, —NH—(C═S)—SH, —CH2—(C═O)—O—C(CH3)3, —O—(CH2)n—CH—(NH2)—COOH, where n=1-6, —(CH2)n—CH═CH wherein n=1-6, —(CH2)n—CH—CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.
摘要:
There is provided a method of forming a pattern on a group III nitride semiconductor substrate. A method of forming a pattern on a group III nitride semiconductor substrate according to an aspect of the invention may include: irradiating a laser beam onto at least one first region for preventing etching in a group III nitride semiconductor substrate; and etching at least one second region exclusive of the first region using the first region irradiated with the laser beam as a mask.
摘要:
Disclosed are a semiconductor light emitting device, which can improve characteristics of the semiconductor light emitting device such as a forward voltage characteristic and a turn-on voltage characteristic, increase light emission efficiency by lowering an input voltage, and increase reliability of the semiconductor light emitting device by a low-voltage operation, and a method of manufacturing the same. The semiconductor light emitting device includes: an n-type GaN semiconductor layer; an active layer formed on a gallium face of the n-type GaN semiconductor layer; a p-type semiconductor layer formed on the active layer; and an n-type electrode formed on a nitrogen face of the n-type GaN semiconductor layer and including a lanthanum (La)-nickel (Ni) alloy.
摘要:
Method of making a membrane electrode assembly comprising: providing a membrane comprising a perfluorinated sulfonic acid; providing a first transfer substrate; applying to a surface of the first transfer substrate a first ink, said first ink comprising an ionomer and a catalyst; applying to the first ink a suitable non-aqueous swelling agent; forming an assembly comprising: the membrane; and the first transfer substrate, wherein the surface of the first transfer substrate comprising the first ink and the non-aqueous swelling agent is disposed upon one surface of the membrane; and heating the assembly at a temperature of 150° C. or less and at a pressure of from about 250 kPa to about 3000 kPa or less for a time suitable to allow substantially complete transfer of the first ink and the second ink to the membrane; and cooling the assembly to room temperature and removing the first transfer substrate and the second transfer substrate.