摘要:
The present disclosure relates to a method of manufacturing catalyst slurry for fuel cells capable of greatly improving efficiency in use of catalyst metal and a method of manufacturing an electrode for fuel cells using the catalyst slurry manufactured using the method. Specifically, the method of manufacturing catalyst slurry for fuel cells includes preparing a catalyst including a porous carrier and catalyst metal, introducing the catalyst, a solvent, and an ionomer into a chamber, and infiltrating the ionomer into pores of the carrier.
摘要:
A composition comprising a carbon material comprising a first channel with a width in the range of 50 nm to 1000 nm and a second channel with a width in the range of 20 nm to 200 nm, wherein the second channel comprises branches and is in fluid communication with the first channel, is provided. Further, articles comprising the composition are provided. A method for making a templated carbon material with hierarchical porosity is also provided.
摘要:
A catalyst layer comprising: (i) a platinum-containing electrocatalyst; (ii) oxygen evolution reaction electrocatalyst; (iii) one or more carbonaceous materials selected from the group consisting of graphite, nanofibres, nanotubes, nanographene platelets and low surface area, heat-treated carbon blacks wherein the one or more carbonaceous materials do not support the platinum-containing electrocatalyst; and (iv) proton-conducting polymer and its use in an electrochemical device is disclosed.
摘要:
An object of the present invention is to provide, in the manufacture of a membrane-catalyst assembly including a polymer electrolyte membrane and a catalyst layer bonded to the polymer electrolyte membrane, a method that achieves both the relaxation of thermocompression bonding conditions and the improvement of adhesion between the catalyst layer and the electrolyte membrane with high productivity. A main object of the present invention is to provide a method of manufacturing a membrane-catalyst assembly including an electrolyte membrane and a catalyst layer bonded to the electrolyte membrane, the method including a liquid application step of applying a liquid to a surface of the catalyst layer before bonding, and a thermocompression bonding step of bonding, to the electrolyte membrane, the catalyst layer to which the liquid is applied by thermocompression bonding.
摘要:
The present invention provides a method of preparing a catalyst material, said catalyst material comprising a support material and an electrocatalyst dispersed on the support material; said method comprising the steps: i) providing a support material; then ii) 10 depositing a silicon oxide precursor on the support material; then iii) carrying out a heat treatment step to convert the silicon oxide precursor to silicon oxide; then iv) depositing said electrocatalyst or a precursor of said electrocatalyst on the support material; then v) removal of at least some of the silicon oxide.
摘要:
Disclosed are a process for separating an electrode for membrane-electrode assemblies of fuel cells from the decal transfer film and an apparatus for separating the electrode. In particular, during the electrode separating process, only an electrode is separated from the decal transfer film on which the electrode is coated, without any damage, by a freezing method for freezing the specimen on the deionized water surface, and thus, wasting the expensive MEA is prevented. Thus, mechanical properties of the pristine electrode can be rapidly quantified in advance, and therefore, long term durability evaluation period during developing MEA having excellent durability is substantially reduced.
摘要:
A single-electrode battery subassembly includes a separator comprising an electrolyte. The separator has a first surface and an opposing second surface. A single electrode is disposed over the first surface of the separator. A removable, electrically inert substrate disposed on the second surface of the separator.
摘要:
The present invention concerns a method for preparing a catalyst coated membrane including the steps of: coating a substrate with a first catalyst dispersion thereby obtaining a first catalyst dispersion coated substrate, providing a second side of a membrane with a support film, coating a first side of the membrane with a second catalyst dispersion, thereby obtaining a second catalyst dispersion coated first side of the membrane, drying the first catalyst dispersion thereby obtaining a first catalyst coated substrate or drying the second catalyst dispersion coated first side of the membrane thereby obtaining a second catalyst coated first side of the membrane, laminating the first catalyst coated substrate to the second catalyst dispersion coated first side of the membrane or laminating the first catalyst dispersion coated substrate to the second catalyst coated first side of the membrane so that the first catalyst and the second catalyst superimpose, thereby forming a laminate including a membrane comprising a first catalyst layer, drying the laminate, removing the support film from the second side of the membrane, coating a third catalyst dispersion on the second side of the membrane, drying the third catalyst dispersion, thereby obtaining a second catalyst layer on the membrane, and removing the substrate from the first catalyst coated substrate.
摘要:
Disclosed is a process for the manufacture of a catalyst-coated membrane-seal assembly, including: (i) providing a carrier material; (ii-i) forming a first layer, the first layer being formed by: (a) depositing a first catalyst component onto the carrier material such that the first catalyst component is deposited in discrete regions; (b) drying the first layer; (ii-ii) forming a second layer, the second layer being formed by: (a) depositing a first seal component, such that the first seal component provides a picture frame pattern having a continuous region and void regions, the continuous region including second seal component and the void regions being free from second seal component; (b) depositing a first ionomer component onto the first layer, such that the first ionomer component is deposited in discrete regions; and (c) drying the second layer.
摘要:
Disclosed is a nanotubular intermetallic compound catalyst for a positive electrode of a lithium air battery and a method of preparing the same. In particular, a porous nanotubular intermetallic compound is simply prepared using electrospinning in which a dual nozzle is used, and, by using the same as a catalyst, a lithium air battery having enhanced discharge capacity, charge/discharge efficiency and lifespan is provided.