摘要:
A method and apparatus are described for forming a multilayer assembly. The method includes adhering first and second catalyst layers to opposed sides of a polymer membrane. At least one of the first catalyst layer, the second catalyst layer, and the polymer membrane is formed by filament extension atomization of a fluid material to form atomized droplets that are sprayed to form the respective membrane or layer.
摘要:
The invention provides a permeable metal substrate and its manufacturing method. The permeable metal substrate includes a substrate body and a permeable powder layer. The permeable powder layer is located on the top of the substrate body. The substrate body can be a thick substrate or formed of a thick substrate and a thin substrate that are welded together. Both the thick and thin substrates have a plurality of permeable straight gas channels. In addition, a metal-supported solid oxide fuel cell and its manufacturing method are also provided.
摘要:
The present disclosure provides improved films/coatings (e.g., catalyst films/coatings), and improved assemblies/methods for fabricating such films/coatings. More particularly, the present disclosure provides advantageous assemblies/methods for fabricating or synthesizing catalytic material (e.g., catalytic nanostructures) in flame and depositing the catalytic material onto substrates. The present disclosure provides improved catalytic nanostructures, and improved assemblies and methods for their manufacture. In exemplary embodiments, the present disclosure provides for methods/assemblies for synthesizing electrocatalytic nanostructures in flame and depositing such material or catalyst onto different substrates or supports. As such, the present disclosure provides advantageous assemblies that are configured and dimensioned to deposit fully dense, controlled porosity films (e.g., films of metals and oxides or core-shell particles) onto different substrates.
摘要:
Systems and methods for manufacturing and use of a two layer coated electrode are provided. The two layer coated electrode may comprise a substrate, a first coating layer, and a second coating layer. The first coating layer may comprise a mixture of iridium oxide and tin oxide, and the second coating layer may comprise a mixture of iridium oxide and tantalum oxide. The electrode may be used in, for example, an electrolytic cell.
摘要:
Disclosed is a process for the manufacture of a catalyst-coated membrane-seal assembly, including: (i) providing a carrier material; (ii-i) forming a first layer, the first layer being formed by: (a) depositing a first catalyst component onto the carrier material such that the first catalyst component is deposited in discrete regions; (b) drying the first layer; (ii-ii) forming a second layer, the second layer being formed by: (a) depositing a first seal component, such that the first seal component provides a picture frame pattern having a continuous region and void regions, the continuous region including second seal component and the void regions being free from second seal component; (b) depositing a first ionomer component onto the first layer, such that the first ionomer component is deposited in discrete regions; and (c) drying the second layer.
摘要:
Disclosed is a nanotubular intermetallic compound catalyst for a positive electrode of a lithium air battery and a method of preparing the same. In particular, a porous nanotubular intermetallic compound is simply prepared using electrospinning in which a dual nozzle is used, and, by using the same as a catalyst, a lithium air battery having enhanced discharge capacity, charge/discharge efficiency and lifespan is provided.
摘要:
A cloud tower (11) receives microscopic particles (18) impelled by an inert gas (17) for deposition on a porous substrate (29) having vacuum (34) disposed on opposite side. To alter the size and/or shape of the deposition field without changing the entire tower structure, a pair of flaps (43, 44) are hinged (47, 48) on one side or on a pair of opposed sides of the cloud primary tower. Another embodiment places selectable tower inserts (36, 38) within the primary tower structure, fitting therein and sealing thereto.
摘要:
A method for forming a conducting nanocomposite layer on a substrate, the method comprising depositing a precursor on the substrate by plasma deposition, wherein the precursor comprises (i) a metal or metalloid centre, and (ii) one or more organic ligands, and wherein the conditions of the plasma deposition are tailored such that an organic matrix is retained in the resulting conducting nanocomposite layer.
摘要:
Methods of fabricating gas diffusion electrodes and gas diffusion electrodes made from such methods are disclosed herein. One method of fabricating a gas diffusion electrode for a fuel cell comprises preparing a catalyst ink of a predetermined viscosity. Preparing the catalyst ink comprises mixing a catalyst solution comprising catalyst particles, an ionomer and a solvent at a first speed for a first period of time and homogenizing the catalyst solution at a second speed in a temperature controlled environment for a second period of time, wherein the second period of time is longer than the first period of time, the second period of time and the second speed selected to preserve a structure of the catalyst particles during homogenization. An active electrode layer is formed by spraying the catalyst ink directly on a gas diffusion layer in a single application and a uniform loading.
摘要:
New polymeric networks bearing benzimidazole units have been prepared. These polymeric networks will combine high proton conductivity, superior mechanical properties and thermal and oxidative stability due to the existence of polar benzimidazole groups and the presence of the unique polymeric architecture. The prepared polymer networks can be used in the catalyst ink of the electrodes in high temperature PEM fuel cells.