Abstract:
A physical vapor deposition apparatus includes a vacuum chamber with side walls, a cathode, a radio frequency power supply, a substrate support, and anode, and a shield. The cathode is inside the vacuum chamber and includes a sputtering target. The radio frequency power supply is configured to apply power to the cathode. The substrate support is inside and electrically isolated from the side walls of the vacuum chamber. The anode is inside and electrically connected to the side walls of the vacuum chamber. The shield is inside and electrically connected to the side walls of the vacuum chamber and includes an annular body and a plurality of concentric annular projections extending from the annular body.
Abstract:
A method of physical vapor deposition includes applying a radio frequency signal to a cathode in a physical vapor deposition apparatus, wherein the cathode includes a sputtering target, electrically connecting a chuck in the physical vapor deposition apparatus to an impedance matching network, wherein the chuck supports a substrate, and wherein the impedance matching network includes at least one capacitor, and depositing material from the sputtering target onto the substrate.
Abstract:
A physical vapor deposition apparatus includes a vacuum chamber with side walls, a cathode, a radio frequency power supply, a substrate support, a shield, and an anode. The cathode is inside the vacuum chamber, and the cathode includes a sputtering target. The radio frequency power supply is configured to apply power to the cathode. The substrate support is inside and electrically isolated from the side walls of the vacuum chamber. The shield is inside and electrically connected to the side walls of the vacuum chamber. The anode is inside and electrically connected to the side walls of the vacuum chamber. The anode includes an annular body and an annular flange projecting inwardly from the annular body, and the annular flange is positioned to define a volume below the target for the generation of plasma.
Abstract:
A piezoelectric device and method of manufacturing the same and an inkjet head are described. In one embodiment, the inkjet print head comprises a plurality of jets, wherein each of the plurality of jets comprises a nozzle, a pressure chamber connected with the nozzle, a piezoelectric body coupled to the pressure chamber, and an electrode coupled to the piezoelectric body to cause displacement of the piezoelectric body to apply pressure to the pressure chamber in response to a voltage applied to the electrode; and wherein electrodes of two or more of the plurality of jets have different sizes to cause their associated piezoelectric bodies to have a uniform displacement amount when the voltage is applied to the electrodes.
Abstract:
A piezoelectric device and method of manufacturing the same and an inkjet head are described. In one embodiment, the inkjet print head comprises a plurality of jets, wherein each of the plurality of jets comprises a nozzle, a pressure chamber connected with the nozzle, a piezoelectric body coupled to the pressure chamber, and an electrode coupled to the piezoelectric body to cause displacement of the piezoelectric body to apply pressure to the pressure chamber in response to a voltage applied to the electrode; and wherein electrodes of two or more of the plurality of jets have different sizes to cause their associated piezoelectric bodies to have a uniform displacement amount when the voltage is applied to the electrodes.
Abstract:
Piezoelectric actuators having a composition of Pb1.00+x(Zr0.52Ti0.48)1.00−yO3Nby, where x>−0.02 and y>0 are described. The piezoelectric material can have a Perovskite, which can enable good bending action when a bias is applied across the actuator.
Abstract:
Piezoelectric actuators having a composition of Pb1.00+x(Zr0.52Ti0.48)1.00−yO3Nby, where x>−0.02 and y>0 are described. The piezoelectric material can have a Perovskite, which can enable good bending action when a bias is applied across the actuator.
Abstract:
A MEMS device with a thin piezoelectric actuator is described. A substrate with a first surface has a crystalline orientation prompting layer on the first surface. A piezoelectric portion contacts the crystalline orientation prompting layer and has an orientation corresponding to the orientation of the crystalline orientation prompting layer. A dielectric material surrounds the piezoelectric portion. The dielectric material is formed of an inorganic material.
Abstract:
A physical vapor deposition apparatus includes a vacuum chamber with side walls, a cathode, a radio frequency power supply, a substrate support, and anode, and a shield. The cathode is inside the vacuum chamber and includes a sputtering target. The radio frequency power supply is configured to apply power to the cathode. The substrate support is inside and electrically isolated from the side walls of the vacuum chamber. The anode is inside and electrically connected to the side walls of the vacuum chamber. The shield is inside and electrically connected to the side walls of the vacuum chamber and includes an annular body and a plurality of concentric annular projections extending from the annular body.