Abstract:
A method for manufacturing a multilayer printed circuit board including providing a core substrate having a penetrating-hole, forming an electroless plated film on a surface of the substrate and an inner wall surface of the penetrating-hole, electrolytically plating the substrate while moving with respect to the surface of the substrate an insulating member in contact with the surface of the substrate such that an electrolytic plated film is formed on the electroless plated film, an opening space inside the penetrating-hole is filled with an electrolytic material, and a through-hole conductor structure is formed in the penetrating-hole, forming an etching resist having an opening pattern on the electrolytic plated film, and removing an exposed pattern of the electrolytic plated film exposed by the opening pattern and a pattern of the electroless plated film under the exposed pattern such that a conductor circuit is formed on the surface of the substrate.
Abstract:
A plating method includes providing an article in a plating bath, covering a surface of the article with an insulating member in the plating bath, and electrolytically plating the article while moving one of the insulating member and the article relative to each other.
Abstract:
A multilayer printed circuit board has an insulation layer, a first conductor layer provided over a first side of the insulation layer, a second conductor layer provided over a second side of the insulation layer opposite to the first side, and multiple filled vias electrically connecting the first conductor layer and the second conductor layer. The filled vias have upper surfaces, respectively, and each of the upper surfaces is made such that a difference between a lowest point and a highest point of each of the upper surfaces is less than or equal to about 7 μm.
Abstract:
A plating apparatus includes a plating bath, a member provided in the plating bath and a moving device. The member is configured to cover a surface to be plated. A moving device is configured to relatively move the member or the surface to change an area of the surface covered by the member.
Abstract:
A plating apparatus includes a plating bath, a member provided in the plating bath and a moving device. The member is configured to cover a surface to be plated. A moving device is configured to relatively move the member or the surface to change an area of the surface covered by the member.
Abstract:
A package substrate including an outermost interlayer resin insulating layer, a pad structure formed on the outermost interlayer resin insulating layer, a conductive connecting pin for establishing an electrical connection with another substrate, the conductive connecting pin being secured to the pad structure via a solder, and via holes formed through the outermost interlayer resin insulating layer and for electrically connecting the pad structure to one or more conductive circuits formed below the outermost interlayer resin insulating layer, the via holes being positioned directly below the pad structure.
Abstract:
A plating method includes providing an article in a plating bath, covering a surface of the article with an insulating member in the plating bath, and electrolytically plating the article while moving one of the insulating member and the article relative to each other.
Abstract:
A linearity of a voltage change to a tuner insertion amount is verified for at least one of a plurality of tuners. Based on the voltage change linearity, individual voltage change data corresponding to respective insertion amounts are calculated for each of the plurality of tuners through a proportional calculation. A combination of auto-tuners and a combination of respective insertion amounts of the auto-tuners are determined using the individual voltage change data, and an adequacy of the determined combinations is verified through a direct three-dimensional electromagnetic field calculation. The combinations are determined on a condition that, when the individual voltage change data of nominated tuners are added together, respective voltage changes attributed to the nominated tuners are cancelled out to allow an entire voltage distribution to have substantially no change.
Abstract:
A package substrate 310 incorporating a substrate provided with a conductor layer 5, a conductive connecting pin 100 arranged to establish the electrical connection with a mother board and secured to the surface of the substrate, wherein a pad 16 for securing the conductive connecting pin is provided for the package substrate 310. The pad 16 is covered with an organic resin insulating layer 15 having an opening 18 through which the pad 16 is partially exposed to the outside. The conductive connecting pin 100 is secured to the pad exposed to the outside through the opening with a conductive adhesive agent 17 so that solution of the conductive connecting pin 100 from the substrate occurring, for example when mounting is performed is prevented.
Abstract:
The present invention intends to provide a novel printed wiring board manufacturing method by which printed wiring boards can be manufactured with efficiency. A method of manufacturing a printed wiring board (FIG. 1B) according to the present invention includes a step for preparing two sets of copper clad laminates (FIG. 2A), a step for bonding the copper clad laminates (FIG. 2B), steps for forming lands on both surfaces of a bonded laminate (FIGS. 2C to 2E), steps for forming respective resin layers on both surfaces of the bonded laminate and forming via hole openings to form respective via holes (FIGS. 2F to 2L), a step for forming a resin layer and forming a via hole opening to form a via hole (FIG. 2M), a step for separating the bonded laminate from each other (FIG. 2N) and steps for forming via hole openings from the bonded surface of the separated laminate to form via holes (FIGS. 2O to 2T). Via holes (33-1, 33-2) formed on the resin layer and a via hole (42) formed on the laminate are opened in the opposite directions.