Abstract:
A pattern formation method includes forming an electromagnetic wave blocking structure having a region on a one side of a support substrate, a reflectance of an electromagnetic wave in the region being lower than a reflectance in an area outside the region; forming a mask layer provided with an opening corresponding to the region and configured to be thermally decomposed at a predetermined temperature on an other side of the support substrate; forming a first heated layer in the opening; and shedding an electromagnetic wave from the one side of the support substrate on the electromagnetic wave blocking structure, wherein an intensity of the electromagnetic wave is determined such that a temperature of the mask layer is less than the predetermined temperature and a temperature of the first heated layer being heated is greater than or equal to the predetermined temperature.
Abstract:
A complex oxide includes a chemical compound represented by ABO3 (Chemical Formula 1). In the Chemical Formula 1, A is one or more elements selected from Ba, Ca, and Sr; and B is one or more elements selected from Ti, Zr, Hf, and Sn. When a field having a size of 1 μm×1 μm on a surface of the complex oxide is observed with an atomic force microscope (AFM), a typical particle size is greater than or equal to 300 nm and less than 660 nm. Here, the typical particle size is a maximum length of a maximum particle observed in the field.
Abstract:
The present invention provides DNA molecules that constitute fragments of the genome of a plant, and polypeptides encoded thereby. The DNA molecules are useful for specifying a gene product in cells, either as a promoter or as a protein coding sequence or as an UTR or as a 3′ termination sequence, and are also useful in controlling the behavior of a gene in the chromosome, in controlling the expression of a gene or as tools for genetic mapping, recognizing or isolating identical or related DNA fragments, or identification of a particular individual organism, or for clustering of a group of organisms with a common trait. One of ordinary skill in the art, having this data, can obtain cloned DNA fragments, synthetic DNA fragments or polypeptides constituting desired sequences by recombinant methodology known in the art or described herein.
Abstract:
A communications system may include a communications device including a first Bluetooth transceiver. The first Bluetooth transceiver may comprise a clock. The first Bluetooth transceiver may be capable of scanning a plurality of different operating frequencies for a pairing request based upon the clock. The communications device may further include an output device coupled with the Bluetooth transceiver and capable of outputting data associated with the clock via a communications path different than Bluetooth. The system may also include a mobile communications device including an input device capable of receiving the clock data from the output device via the communications path, and a second Bluetooth transceiver coupled with the input device and capable of generating the pairing request based upon the received clock data.
Abstract:
This invention provides transgenic plant cells with recombinant DNA for expression of proteins that are useful for imparting enhanced agronomic trait(s) to transgenic crop plants. This invention also provides transgenic plants and progeny seed comprising the transgenic plant cells where the plants are selected for having an enhanced trait selected from the group of traits consisting of enhanced water use efficiency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil. Also disclosed are methods for manufacturing transgenic seed and plants with enhanced traits.
Abstract:
A method of coating a material onto projections provided on a patch. The method includes applying a coating solution containing the material to at least the projections and drying the coating solution to at least the projections using a gas flow.
Abstract:
A mobile wireless communications system may include an application server for providing a plurality of mobile device applications and updates thereto, and a plurality of mobile wireless communications devices communicating with the application server via a wireless communications network for selectively downloading and installing available mobile device applications and updates. The application server may have a selectable update frequency for different mobile wireless communications devices based upon respective account parameters associated therewith.
Abstract:
Recombinant constructs and methods useful for improvement of plants are provided. In particular, recombinant constructs comprising promoters functional in plant cells positioned for expression of polynucleotides encoding polypeptides from microbial sources are provided. The disclosed constructs and methods find use in production of transgenic plants to provide plants, particularly crop plants, having improved properties.
Abstract:
Recombinant constructs and methods useful for improvement of plants are provided. In particular, recombinant constructs comprising promoters functional in plant cells positioned for expression of polynucleotides encoding polypeptides from microbial sources are provided. The disclosed constructs and methods find use in production of transgenic plants to provide plants, particularly crop plants, having improved properties.
Abstract:
A pattern formation method includes forming an electromagnetic wave blocking structure having a region on a one side of a support substrate, a reflectance of an electromagnetic wave in the region being lower than a reflectance in an area outside the region; forming a mask layer provided with an opening corresponding to the region and configured to be thermally decomposed at a predetermined temperature on an other side of the support substrate; forming a first heated layer in the opening; and shedding an electromagnetic wave from the one side of the support substrate on the electromagnetic wave blocking structure, wherein an intensity of the electromagnetic wave is determined such that a temperature of the mask layer is less than the predetermined temperature and a temperature of the first heated layer being heated is greater than or equal to the predetermined temperature.