摘要:
Methods of fabricating a semiconductor device can include forming at least one layer on a first and a second side of a semiconductor substrate. Portions of the at least one layer may be removed on the first side of the semiconductor substrate to form a pattern of the at least one layer on the first side of the substrate while the at least one layer is maintained on the second side of the substrate. A capping layer can be formed on the pattern of the at least one layer on the first side of the substrate and on the at least one layer on the second side of the semiconductor substrate. The capping layer can be removed on the second side of the semiconductor substrate, thereby exposing the at least one layer on the second side of the substrate while maintaining the capping layer on the first side of the substrate. The at least one layer can be removed on the second side of the semiconductor substrate, while the capping layer and the pattern of the at least one layer is maintained on the first side of the semiconductor substrate. A portion of the capping layer can be removed on the first side of the semiconductor substrate.
摘要:
A prefabricated windows and doors system includes a window frame including upper and lower frame, a window holder suspended from the upper frame, a window support slidably inserted into the lower guide recess to support a roller, which is rotatable, on the rail, and a window coupled to the window holder and the window support, and being attachable to or removable from the window holder and the window support. The upper frame has an upper guide recess, and the lower frame contains a stepped portion to have a staircase shape and contains a lower guide recess on a sidewall of the stepped portion. A guide bar extended in a sliding direction of the window may be further installed in the upper guide recess. A suspension portion of the window holder may have a ring shape surrounding the guide bar.
摘要:
There is provided a method of chemical mechanical polishing (CMP) and a method of fabricating a semiconductor device using the same. The method includes forming a layer to be polished on a semiconductor substrate including a normally polished region and a dished region, and forming a dishing (i.e., over-polishing)-preventing layer on the layer to be polished in the region where dishing may occur. Then, the layer to be polished is polished while dishing thereof is prevented using the dishing-preventing layer. Accordingly, the dishing-preventing layer is formed in the region where the dishing (i.e., over-polishing) may occur, so that the dishing is prevented from occurring in a region where pattern density is low and a pattern size is large in the process of CMP.
摘要:
The present invention relates to a liquid crystal display device that prevents a color shift by allowing two sub-pixel areas to have the same transmittance. A liquid crystal display device according to the present invention includes a data line that includes: a connection portion having a direction of extension perpendicular to that of a gate line; a first portion oriented at a first angle with respect to a direction of extension of the connection portion; and a second portion oriented at a second angle different from the first angle with respect to the direction of extension of the connection portion, and wherein an angle between a rubbing direction of the liquid crystal and the connection portion satisfies θ L = θ 2 - θ 1 2 (where θL is the angle between the rubbing direction of the liquid crystal and the direction of extension of the connection portion, θ1: the first angle, θ2: the second angle).
摘要:
A wiring structure of a semiconductor device may include an insulation interlayer on a substrate, the insulation interlayer having a linear first trench having a first width and a linear second trench having a second width, the linear second trench being in communication with a lower portion of the linear first trench, the first width being wider than the second width, and a conductive layer pattern in the linear first and second trenches.
摘要:
There is provided a method of chemical mechanical polishing (CMP) and a method of fabricating a semiconductor device using the same. The method includes forming a layer to be polished on a semiconductor substrate including a normally polished region and a dished region, and forming a dishing (i.e., over-polishing)-preventing layer on the layer to be polished in the region where dishing may occur. Then, the layer to be polished is polished while dishing thereof is prevented using the dishing-preventing layer. Accordingly, the dishing-preventing layer is formed in the region where the dishing (i.e., over-polishing) may occur, so that the dishing is prevented from occurring in a region where pattern density is low and a pattern size is large in the process of CMP.
摘要:
A wiring structure of a semiconductor device may include an insulation interlayer on a substrate, the insulation interlayer having a linear first trench having a first width and a linear second trench having a second width, the linear second trench being in communication with a lower portion of the linear first trench, the first width being wider than the second width, and a conductive layer pattern in the linear first and second trenches.
摘要:
Methods of fabricating a semiconductor device can include forming at least one layer on a first and a second side of a semiconductor substrate. Portions of the at least one layer may be removed on the first side of the semiconductor substrate to form a pattern of the at least one layer on the first side of the substrate while the at least one layer is maintained on the second side of the substrate. A capping layer can be formed on the pattern of the at least one layer on the first side of the substrate and on the at least one layer on the second side of the semiconductor substrate. The capping layer can be removed on the second side of the semiconductor substrate, thereby exposing the at least one layer on the second side of the substrate while maintaining the capping layer on the first side of the substrate. The at least one layer can be removed on the second side of the semiconductor substrate, while the capping layer and the pattern of the at least one layer is maintained on the first side of the semiconductor substrate. A portion of the capping layer can be removed on the first side of the semiconductor substrate.
摘要:
Methods are provided for forming integrated circuit devices. A spin on glass (SOG) insulating layer is formed on an integrated circuit substrate. The SOG insulating layer includes sidewalls that define contact holes therein and spacers are formed on the sidewalls of the SOG insulating layer. Integrated circuit devices are also provided. The integrated circuit devices include an integrated circuit substrate, a spin on glass (SOG) insulating layer on the integrated circuit substrate. The SOG insulating layer includes sidewalls that define contact holes therein and spacers are provided on sidewalls of the SOG insulating layer.
摘要:
The present invention relates to a nanocomposite device comprising a polymeric matrix, semiconducting nanoparticles, and a semiconducting molecule having a field-effect mobility of at least 0.1 cm2/Vs. In addition, the present invention relates to a method of making a nanocomposite device. The method includes providing a mixture comprising a polymer, semiconducting nanoparticles, and a semiconducting molecule having a field-effect mobility of at least 0.1 cm2/Vs or a soluble precursor thereof, depositing the mixture on a substrate, and treating the mixture under conditions effective to produce a nanocomposite device comprising the polymeric matrix, semiconducting nanoparticles, and the semiconducting molecule having a field-effect mobility of at least 0.1 cm2/Vs. Thin film devices including the nanocomposite device are also disclosed.