Abstract:
A method and an apparatus for lane recognition for a vehicle that is equipped with an adaptive distance and speed control system are provided, the adaptive distance and speed controller having conveyed to it, using an object detection system, the relative speed of detected objects, a variable for determining the lateral offset of the detected objects with respect to the longitudinal vehicle axis, and the speed of the host vehicle. From the relative speed of the objects and the host-vehicle speed, a determination is made as to whether an object is oncoming, stationary, or moving in the same direction as the host vehicle. In combination with the calculated lateral offset of the detected object with respect to the longitudinal vehicle axis, the number of lanes present and the lane currently being traveled in by the host vehicle are determined.
Abstract:
An apparatus and a method for transmitting measurement data between an object-detection device and an evaluation device are provided, the evaluation device sending to the object-detection device one or more data packets with the object identifiers relevant for the evaluation device, the object-detection device inserting the current measurement data of the detected objects into a fixed, predetermined number of data packets, the objects, which the evaluation device with the aid of the object identifiers marked as relevant, being entered preferentially, and the apparatus outputting the data packet to a data bus via the connector element to the data bus.
Abstract:
A device is for determining a corrected offset value which represents the offset of the output signal of a first vehicle sensor, the sensor determining at least one motion of a vehicle. In this device, a first arrangement is provided by which at least two offset values representing the offset of the sensor are determined by at least two different methods. In addition, for at least one of the offset values of the sensor thus determined, an error band is determined in addition to the offset value. The corrected offset value is determined as a function of the offset values determined and at least one of the error bands.
Abstract:
A method for mapping surroundings of a vehicle, objects in the surroundings of the vehicle being detected with the aid of sensors and particular detected objects being described by two coordinate points and also by a position fuzziness assigned to the particular coordinate point, the coordinate points and the position fuzziness values being stored in an interface in the form of data which may be accessed by driver assistance systems of the vehicle. A method is also described for ascertaining the collision probability of a vehicle with an object, in which the surroundings of the vehicle are initially mapped using the method for mapping the surroundings of a vehicle, a travel path to be traveled by the vehicle is ascertained in a subsequent step, and the degree of overlap between the object and the travel path and also the collision probability are finally determined, taking the position fuzziness into account.
Abstract:
A membrane electrode assembly, comprising at least one phosphoric acid-containing polymer electrolyte membrane and at least one gas diffusion electrode, said gas diffusion electrode comprising: i. at least one catalyst layer and ii. at least one gas diffusion medium having at least two gas diffusion layers, the first gas diffusion layer comprising an electrically conductive macroporous layer in which the pores have a mean pore diameter in the range from 10 μm to 30 μm, the second gas diffusion layer comprising an electrically conductive macroporous layer in which the pores have a mean pore diameter in the range from 10 μm to 30 μm, the gas diffusion medium comprising polytetrafluoroethylene, the first gas diffusion layer having a higher polytetrafluoroethylene concentration than the second gas diffusion layer.
Abstract:
A device and a method determine an offset value which represents the offset of the output signal of a vehicle sensor, the sensor detecting at least one motion of a vehicle, and the output signal is analyzed at at least two different points in time. An additional signal is determined independently of the output signal, this signal also representing the motion of the vehicle. An arrangement is provided for analyzing the characteristic of the output signal, which depends on the longitudinal velocity of the vehicle, and the characteristic of the additional signal, which also depends on the longitudinal velocity of the vehicle, in order to determine the offset value.
Abstract:
A device is part if a device for regulating a motion variable representing the vehicle motion. This device is used to determine whether a vehicle is located on a road surface inclined across the direction of travel of the vehicle. The device has a first apparatus for detecting various variables describing the vehicle motion. Furthermore, this device contains a second apparatus with which identically defined comparison Variables are determined at least on the basis of the various variables describing the vehicle motion detected with the first apparatus. In the third apparatus of this device, plausibility queries are performed at least on the basis of the identically defined comparison variables to determine whether the vehicle is located on a road surface inclined across the direction of travel of the vehicle. The result of the determination performed with the third apparatus is taken into account in regulating the motion variable representing the vehicle motion.
Abstract:
An apparatus and a process for closed loop control of a motion quantity representing the vehicle motion which means determine the yaw rate of the vehicle, the longitudinal speed of the vehicle, and the transverse acceleration of the vehicle. Moreover, the apparatus influences the forward moment and/or the braking moment of individual wheels of the vehicle. The apparatus further determines a transverse acceleration component dependent on the roadway transverse inclination, as well as correcting the transverse acceleration of the vehicle at least as a function of the transverse acceleration component dependent on the roadway transverse inclination. The determination of the transverse acceleration component dependent on the roadway transverse inclination and also the correction of the transverse acceleration of the vehicle as carried out in a stable state of the vehicle characterized by the yaw rate and the transverse acceleration.
Abstract:
A method for travel course prediction in a motor vehicle having a position finding system for objects situated ahead of the vehicle is provided. In accordance with the method, a function describing the shape of the roadside is calculated on the basis of measured distance data and angle data for stationary roadside targets, wherein multiple stationary targets are identified and tracked. The path of the road is estimated for various subsets of the set of tracked stationary targets, under the assumption that these stationary targets are situated along the roadside, and roadside targets are differentiated from interfering objects on the basis of the plausibility of the resulting possible shapes of the roadside, the most probable shape of the roadside being determined on the basis of the roadside targets.