Abstract:
The present invention relates to a metering module (15) for a liquid reducing agent, in particular a urea-water solution, for mixing the reducing agent with a gas, in particular air, for further introduction into an exhaust pipe (5) of an internal combustion engine (1). The metering module (15) comprises a metering valve (31) having a conduit (33), a compressed air duct (49) and a mixing chamber (35). An outlet opening of the conduit (33) for the reducing agent is arranged in the mixing chamber (35) at a distance from the mid-axis of the metering module (36).
Abstract:
A fuel injection apparatus for internal combustion engines, having a pump piston, axially guided in a cylinder bore of a pump housing, driven in a reciprocating manner by a cam drive; the pump piston defines a pump work chamber with its face end. The pump work chamber communicates with an injection valve via a pressure conduit and fuel from a reservoir is fed in and removed via a fuel line that has a feed pump; the triggering of the supply onset and end of supply of the unit fuel injector is achieved by means of a magnet valve inserted in the feed line in the region of the pump housing. In order to prevent the deposit of dirt particles in the pump, the unit fuel injector has a fuel filter in the pump housing, which is inserted in a diversion chamber below the magnet valve, and upstream of which a baffle plate is provided in the direction of the magnet valve to protect the filter from the intense diversion stream.
Abstract:
A fuel injection pump is proposed having a rotating distributor, which is axially adjusted by an electromagnetic final control element counter to the force of a restoring spring. The force of the restoring spring is transmitted via an intermediate ring onto a collar of an armature serving as a coupling element, with the armature being provided with an axial recess into which a fitting part of the core of the electromagnet can plunge when magnetic force is applied.
Abstract:
A method of utilizing the first valve bounce is used in a diesel engine having a solenoid valve controlled fuel injection system, wherein the solenoid-actuated valve is movable between a fully closed position for injection and a fully open position preventing injection. The method includes: (1) energizing the solenoid for valve movement to the fully closed position for commencing pilot injection; (2) de-energizing the solenoid immediately prior to the valve reaching the fully closed position for pilot injection in order to facilitate movement of the valve toward the fully open position immediately after the valve has reached the fully closed position, thereby preventing subsequent valve bounces; and (3) re-energizing the solenoid immediately prior to the valve reaching the fully open position, whereby to facilitate movement of the valve toward the fully closed position for main injection immediately after the valve reaches the fully open position, thus preventing subsequent valve bounces and decreasing time lag between pilot and main injection.
Abstract:
An electrically controlled fuel injection pump for internal combustion engines having a pump piston disposed and guided in a pump housing and defining a pump chamber and in its pumping stroke pumping fuel, delivered to this pump work chamber by a feed pump to an injection nozzle as long as a quantity control valve blocks the flow of the fuel otherwise overflowing from the pump work chamber via a metering line to a low-pressure chamber. A housing part receiving the quantity control valve and projecting laterally from the pump housing at the level of the pump housing, into which part the metering line leading to the pump work chamber extends, wherein lateral recesses on the projecting housing part are provided, which are engaged in forked fashion by a fastening cuff for the quantity control valve. The fastening cuff being provided with an internal thread and cooperating with a screw sleeve having an external thread.
Abstract:
A fuel injection device for internal combustion engines, in which the control of the high-pressure delivery of the pump piston is achieved via a magnet valve disposed in a line between the pump work chamber and a fuel tank. To that end, the magnet valve has a valve member, actuated counter to the force of a valve spring by an electrical actuator and the valve member cooperates, by its sealing face with a valve seat and is pressure balanced via a cross-sectional constriction, which is disposed in a pressure chamber that communicates with the pump work chamber. In the event of a fracture of the valve member, in order to avoid blocking of the magnet valve when closed and an attendant uncontrolled, excessive fuel injection quantity, an axial bore is disposed inside the valve member, which bore feeds into a connecting line and on into the low-pressure chamber, and via which the high fuel pressure can drop after the valve member breaks.
Abstract:
The present invention relates to a metering module (15) for a liquid reducing agent, in particular a urea-water solution, for mixing the reducing agent with a gas, in particular air, for further introduction into an exhaust pipe (5) of an internal combustion engine (1). The metering module (15) comprises a metering valve (31) having a conduit (33), a compressed air duct (49) and a mixing chamber (35). An outlet opening of the conduit (33) for the reducing agent is arranged in the mixing chamber (35) at a distance from the mid-axis of the metering module (36).
Abstract:
A fuel injection pump is proposed in which over a first portion of the supply stroke of the pump piston fuel for the main injection is pumped via a distributor line and a distributor groove into one at a time of a plurality of fuel injection lines. In a second, remaining portion of the pump piston supply stroke, on the same cam flank, fuel is then pre-stored in a reservoir, controlled by a first electrically controlled valve and a second electrically controlled valve and by one of a plurality of longitudinal control grooves, which fuel subsequently, before the beginning of the next main injection determined by the closure of the first electrically controlled valve, is pumped via a second distributor line into the next succeeding injection line.
Abstract:
A fuel injection apparatus for internal combustion engines in which via an electrically controlled valve communication is established between a pump work chamber of a fuel injection pump and a low-pressure fuel chamber, and the switching times and movement times of the valve member of the valve are detected with the aid of a switching position transducer. The actual switching times are used for correction of the control times of the valve and thus for correction of the quantity of fuel attaining injection.
Abstract:
Fuel injection pump with a cam drive 3 effecting the feeding movement of a pump piston 1 which is provided with a rotating part 1,2 being rotationally connected with the pump piston 1 and a drive ring 21 for the pump drive being rotatable by about a certain angle for the purpose of starting the feeding change, whereby the rotating of the drive ring 21 is performed by an injection adjustment bolt 22 which radially penetrates the drive ring and which is pivotable by means of an injection adjustment piston 23 mounted tangentially to the drive ring 21, whereby the injection adjustment bolt 22 is provided with axial front faces 41,43 coacting in both axial directions with support faces 24,25 which are independent from the injection adjustment bolt for its axial securing.