Abstract:
A magnetic sensor comprises a nonmagnetic conductive layer, a free magnetization layer disposed on a first part of the nonmagnetic conductive layer, a fixed magnetization layer disposed on a second part of the nonmagnetic conductive layer different from the first part, upper and lower first magnetic shield layers opposing each other through the nonmagnetic conductive layer and free magnetization layer interposed therebetween, upper and lower second magnetic shield layers opposing each other through the nonmagnetic conductive layer and fixed magnetization layer interposed therebetween, and an electrically insulating layer disposed between the lower second magnetic shield layer and the nonmagnetic conductive layer, while the lower first magnetic shield layer is arranged closer to the nonmagnetic conductive layer than is the lower second magnetic shield layer.
Abstract:
The spin transport device includes a semiconductor layer; a first ferromagnetic layer provided on the semiconductor layer via a first tunnel barrier layer; a second ferromagnetic layer provided on the semiconductor layer via a second tunnel barrier layer so as to be divided from the first ferromagnetic layer; and a first wire which generates, upon application of an electric current, a magnetic field in a region between the first ferromagnetic layer and the second ferromagnetic layer in the semiconductor layer.
Abstract:
A magnetic sensor is provided with a channel of a semiconductor, a first insulating film and a metal body arranged opposite to each other with the channel in between, a ferromagnet provided on the first insulating film, a first reference electrode connected to the metal body, a second reference electrode connected to the metal body, a magnetic shield covering a portion opposed to the ferromagnet in the channel, and a second insulating film provided between the channel and the magnetic shield. The magnetic shield has a through hole extending toward the portion opposed to the ferromagnet in the channel.
Abstract:
A spin transport device is provided, which includes a channel comprised of a semiconductor material, a magnetization fixed layer arranged on the channel via a first insulating layer, a magnetization free layer arranged on the channel via a second insulating layer, and first and second electrodes arranged on the channel, wherein carrier densities of a first region of the channel including a contact surface with the first insulating layer, a second region of the channel including a contact surface with the second insulating layer, a third region of the channel including an opposite surface to the first electrode, and a fourth region of the channel including an opposite surface to the second electrode are higher than an average carrier density of the whole channel. Accordingly, a spin transport device that can realize good spin transportation and electric resistance characteristics while suppressing the scattering of spin can be provided.
Abstract:
A magnetic sensor comprises a nonmagnetic conductive layer, a free magnetization layer disposed on a first part of the nonmagnetic conductive layer, a fixed magnetization layer disposed on a second part of the nonmagnetic conductive layer different from the first part, upper and lower first magnetic shield layers opposing each other through the nonmagnetic conductive layer and free magnetization layer interposed therebetween, upper and lower second magnetic shield layers opposing each other through the nonmagnetic conductive layer and fixed magnetization layer interposed therebetween, a first electrically insulating layer disposed between the lower second magnetic shield layer and nonmagnetic conductive layer, and a first electrode layer for electrically connecting the lower second magnetic shield layer and nonmagnetic conductive layer to each other, while the fixed magnetization layer and first electrode layer oppose each other through the nonmagnetic conductive layer.
Abstract:
A magnetic sensor comprises a support; a nonmagnetic conductive layer disposed on the support; a fixed magnetization layer disposed on a first part of the nonmagnetic conductive layer and on the support; a free magnetization layer disposed on a second part of the nonmagnetic conductive layer different from the first part and on the support; and a nonmagnetic low resistance layer, disposed on a part overlapping the nonmagnetic conductive layer in at least one of the fixed magnetization layer and free magnetization layer, having an electrical resistivity lower than that of the one layer.
Abstract:
There is a thin-film magnetic head provided, which comprises a perpendicular recording head portion including a thin-film coil adapted to generate a magnetic flux, and a main magnetic pole layer that extends rearward from a recording medium opposite plane facing a recording medium and has a main magnetic pole adapted to release a magnetic flux produced at the thin-film coil toward the recording medium. A given concave groove form that is more constricted as the lower end draws nearer is provided at or near the flare point of the front end of the main magnetic pole, so that the flow of the magnetic flux through the main magnetic pole is focused on the upper end edge (gap portion), thereby improving overwrite performance and holding back the occurrence of pole erasure.
Abstract:
After forming an insulating film on an underlying layer, a resist pattern is formed on the insulating film. The insulating film is etched by using the resist pattern as a mask, thereby forming an insulating film pattern. Without removing the resist pattern, exposed portions of the underlying layer and the insulating film pattern are subjected to a plasma treatment, cleaning, a heat treatment or the like, so that a deposition grown during the formation of the insulating film pattern can be removed. Thereafter, the underlying layer is etched by using at least the insulating film pattern as a mask. As a result, even when a strict pattern rule is employed, pattern defects can be prevented from being caused in etching a multi-layer film.
Abstract:
After forming an insulating film on an underlying layer, a resist pattern is formed on the insulating film. The insulating film is etched by using the resist pattern as a mask, thereby forming an insulating film pattern. Without removing the resist pattern, exposed portions of the underlying layer and the insulating film pattern are subjected to a plasma treatment, cleaning, a heat treatment or the like, so that a deposition grown during the formation of the insulating film pattern can be removed. Thereafter, the underlying layer is etched by using at least the insulating film pattern as a mask. As a result, even when a strict pattern rule is employed, pattern defects can be prevented from being caused in etching a multi-layer film.
Abstract:
The solid-state image device includes a compensating device for differences in the voltage level of the data representing the first and the second field images which consist of one picture image. The compensating device outputs one field image data without change and amplifies the remaining field image data according to the differences in the voltage level of the data of the first and second field.