Abstract:
There is provided a semiconductor device having a metal silicide layer which can suppress the malfunction and the increase in power consumption of the device. The semiconductor device has a semiconductor substrate containing silicon and having a main surface, first and second impurity diffusion layers formed in the main surface of the semiconductor substrate, a metal silicide formed over the second impurity diffusion layer, and a silicon nitride film and a first interlayer insulation film sequentially stacked over the metal silicide. In the semiconductor device, a contact hole penetrating through the silicon nitride film and the first interlayer insulation film, and reaching the surface of the metal silicide is formed. The thickness of a portion of the metal silicide situated immediately under the contact hole is smaller than the thickness of a portion of the metal silicide situated around the contact hole.
Abstract:
An N-type source region and an N-type drain region of N-channel type MISFETs are implanted with ions (containing at least one of F, Si, C, Ge, Ne, Ar and Kr) with P-channel type MISFETs being covered by a mask layer. Then, each gate electrode, source region and drain region of the N- and P-channel type MISFETs are subjected to silicidation (containing at least one of Ni, Ti, Co, Pd, Pt and Er). This can suppress a drain-to-body off-leakage current (substrate leakage current) in the N-channel type MISFETs without degrading the drain-to-body off-leakage current in the P-channel type MISFETs.
Abstract:
A semiconductor device preventing contact between a capacitor insulator and a plug material even when an upper surface of the plug is exposed by misregistration in lithography and manufacturing method thereof are obtained. The semiconductor device includes an interlayer insulating film, a conducting plug, a capacitor lower electrode and a capacitor dielectric, and an end portion of the upper surface of the conducting plug has a portion overlapping a vicinity of an outer periphery of the upper surface of the capacitor lower electrode when viewed two-dimensionally. In the vicinity of the end portion of the upper surface of the conducting plug, a chemically inactive member is formed.
Abstract:
A lower electrode layer 1 of a capacitor 10 is formed by sputtering performed at a temperature lower than 450.degree. C. in an atmosphere containing oxygen, and thereby the lower electrode layer 1 thus formed contains oxygen. Thereby, a method of manufacturing a semiconductor device having the capacitor can suppress current leak, and can prevent peeling of an electrode.
Abstract:
A method of depositing a thin film on a substrate by chemical vapor deposition (CVD) including feeding a liquid CVD source material, including a solution in which at least one organometallic complex is dissolved in a solvent, at a constant flow rate to a vaporizer while keeping the CVD source material in a liquid state; vaporizing the liquid CVD source material by heating to form a CVD source material gas; and forming a thin film of a metal oxide on a substrate using the CVD material source gas in a reaction chamber, the thin film including at least titanium, including using TTIP and TiO(Dpm).sub.2 together as the organometallic complex.
Abstract:
A chemical vapor deposition (CVD) apparatus for depositing a thin film on a substrate by CVD has a material container for containing a liquid CVD source material, a material feeder for feeding the liquid CVD source material to a vaporizer for vaporizing the liquid CVD source material, and a reaction chamber for forming the thin film on the substrate using the CVD source material gas. Both the vaporizer and piping between the vaporizer and the reaction chamber are located in a thermostatic box surrounding the reaction chamber. Thus, the structure of the apparatus is simplified and also the heat efficiency of the apparatus is improved.
Abstract:
A dynamic random access memory (DRAM) is disclosed that can effectively prevent the formation of steps in the boundary region of a memory cell array 101 and a peripheral circuit 102, even in high integrated devices. This DRAM includes a double peripheral wall 20 of peripheral walls 20a and 20b at the boundary region of the memory cell array 101 and the peripheral circuit 102 of a P type silicon substrate 1, extending vertically upwards from the P type silicon substrate 1. The upper surfaces of the devices formed on the memory cell array and the peripheral circuit 102 in forming devices on the memory cell array 101 and the peripheral circuit 102 are substantially planarized, by virture of the double peripheral wall 20, to effectively prevent steps from being generated in the boundary region of the memory cell array 101 and the peripheral circuit 102, even in high integrated devices.
Abstract:
A semiconductor device is formed by sealing, with a resin, a semiconductor chip (CP1) having an oscillation circuit utilizing a reference resistor. The oscillation circuit generates a reference current by utilizing the reference resistor, a voltage is generated in accordance with this reference current and an oscillation frequency of the oscillation unit, and the oscillation unit oscillates at a frequency in accordance with the generated voltage. The reference resistor is formed of a plurality of resistors, which extend in a first (Y) direction orthogonal to a first side, inside a first region (RG1, RG2, RG3, and RG4) surrounded by the first side (S1, S2, S3, and S4) of a main surface of the semiconductor chip (CP1), a first line (42, 43, 44, and 45) connecting between one end of the first side and the center (CT1) of the main surface of the semiconductor chip, and a second line (42, 43, 44, and 45) connecting between the other end of the first side and the center of the main surface of the semiconductor chip.
Abstract:
A semiconductor device is formed by sealing, with a resin, a semiconductor chip (CP1) having an oscillation circuit utilizing a reference resistor. The oscillation circuit generates a reference current by utilizing the reference resistor, a voltage is generated in accordance with this reference current and an oscillation frequency of the oscillation unit, and the oscillation unit oscillates at a frequency in accordance with the generated voltage. The reference resistor is formed of a plurality of resistors, which extend in a first (Y) direction orthogonal to a first side, inside a first region (RG1, RG2, RG3, and RG4) surrounded by the first side (S1, S2, S3, and S4) of a main surface of the semiconductor chip (CP1), a first line (42, 43, 44, and 45) connecting between one end of the first side and the center (CT1) of the main surface of the semiconductor chip, and a second line (42, 43, 44, and 45) connecting between the other end of the first side and the center of the main surface of the semiconductor chip.
Abstract:
A manufacturing method of a semiconductor device including a TiN film, including a deposition step of forming a TiN film by the CVD method, an anneal step of performing a heat treatment to the formed TiN film in an atmosphere of NH3 gas, an NH3 gas purge step of purging NH3 gas, and a step of further repeating the deposition step, the anneal step, and the NH3 gas purge step for at least one time. The deposition step is performed using titanium halide gas and NH3 gas as material gases and with a deposition temperature of 300° C.-450° C. to form the TiN film by a thickness of 1 nm-5 nm for each deposition step. Thus, a semiconductor device in which generation of irregularly grown objects in the TiN film is suppressed and a manufacturing method thereof can be provided.